-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval.py
1343 lines (1219 loc) · 48.6 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import io as sysio
import time
import math
import numba
import numpy as np
from numba import cuda
import os
import sys
from tqdm import tqdm
import warnings
warnings.filterwarnings('ignore')
AP_mode = 40
# AP_mode = 11
@cuda.jit(
device=True,
inline=True)
def line_segment_intersection_v1(pts1, pts2, i, j, temp_pts):
a = cuda.local.array((2,), dtype=numba.float32)
b = cuda.local.array((2,), dtype=numba.float32)
c = cuda.local.array((2,), dtype=numba.float32)
d = cuda.local.array((2,), dtype=numba.float32)
a[0] = pts1[2 * i]
a[1] = pts1[2 * i + 1]
b[0] = pts1[2 * ((i + 1) % 4)]
b[1] = pts1[2 * ((i + 1) % 4) + 1]
c[0] = pts2[2 * j]
c[1] = pts2[2 * j + 1]
d[0] = pts2[2 * ((j + 1) % 4)]
d[1] = pts2[2 * ((j + 1) % 4) + 1]
area_abc = trangle_area(a, b, c)
area_abd = trangle_area(a, b, d)
if area_abc * area_abd >= 0:
return False
area_cda = trangle_area(c, d, a)
area_cdb = area_cda + area_abc - area_abd
if area_cda * area_cdb >= 0:
return False
t = area_cda / (area_abd - area_abc)
dx = t * (b[0] - a[0])
dy = t * (b[1] - a[1])
temp_pts[0] = a[0] + dx
temp_pts[1] = a[1] + dy
return True
@cuda.jit(
device=True,
inline=True)
def line_segment_intersection(pts1, pts2, i, j, temp_pts):
A = cuda.local.array((2,), dtype=numba.float32)
B = cuda.local.array((2,), dtype=numba.float32)
C = cuda.local.array((2,), dtype=numba.float32)
D = cuda.local.array((2,), dtype=numba.float32)
A[0] = pts1[2 * i]
A[1] = pts1[2 * i + 1]
B[0] = pts1[2 * ((i + 1) % 4)]
B[1] = pts1[2 * ((i + 1) % 4) + 1]
C[0] = pts2[2 * j]
C[1] = pts2[2 * j + 1]
D[0] = pts2[2 * ((j + 1) % 4)]
D[1] = pts2[2 * ((j + 1) % 4) + 1]
BA0 = B[0] - A[0]
BA1 = B[1] - A[1]
DA0 = D[0] - A[0]
CA0 = C[0] - A[0]
DA1 = D[1] - A[1]
CA1 = C[1] - A[1]
acd = DA1 * CA0 > CA1 * DA0
bcd = (D[1] - B[1]) * (C[0] - B[0]) > (C[1] - B[1]) * (D[0] - B[0])
if acd != bcd:
abc = CA1 * BA0 > BA1 * CA0
abd = DA1 * BA0 > BA1 * DA0
if abc != abd:
DC0 = D[0] - C[0]
DC1 = D[1] - C[1]
ABBA = A[0] * B[1] - B[0] * A[1]
CDDC = C[0] * D[1] - D[0] * C[1]
DH = BA1 * DC0 - BA0 * DC1
Dx = ABBA * DC0 - BA0 * CDDC
Dy = ABBA * DC1 - BA1 * CDDC
temp_pts[0] = Dx / DH
temp_pts[1] = Dy / DH
return True
return False
@cuda.jit(device=True, inline=True)
def point_in_quadrilateral(pt_x, pt_y, corners):
ab0 = corners[2] - corners[0]
ab1 = corners[3] - corners[1]
ad0 = corners[6] - corners[0]
ad1 = corners[7] - corners[1]
ap0 = pt_x - corners[0]
ap1 = pt_y - corners[1]
abab = ab0 * ab0 + ab1 * ab1
abap = ab0 * ap0 + ab1 * ap1
adad = ad0 * ad0 + ad1 * ad1
adap = ad0 * ap0 + ad1 * ap1
eps = -1e-6
return abab - abap >= eps and abap >= eps and adad - adap >= eps and adap >= eps
@cuda.jit(device=True, inline=True)
def quadrilateral_intersection(pts1, pts2, int_pts):
num_of_inter = 0
for i in range(4):
if point_in_quadrilateral(pts1[2 * i], pts1[2 * i + 1], pts2):
int_pts[num_of_inter * 2] = pts1[2 * i]
int_pts[num_of_inter * 2 + 1] = pts1[2 * i + 1]
num_of_inter += 1
if point_in_quadrilateral(pts2[2 * i], pts2[2 * i + 1], pts1):
int_pts[num_of_inter * 2] = pts2[2 * i]
int_pts[num_of_inter * 2 + 1] = pts2[2 * i + 1]
num_of_inter += 1
temp_pts = cuda.local.array((2,), dtype=numba.float32)
for i in range(4):
for j in range(4):
has_pts = line_segment_intersection(pts1, pts2, i, j, temp_pts)
if has_pts:
int_pts[num_of_inter * 2] = temp_pts[0]
int_pts[num_of_inter * 2 + 1] = temp_pts[1]
num_of_inter += 1
return num_of_inter
@cuda.jit(device=True, inline=True)
def rbbox_to_corners(corners, rbbox):
# generate clockwise corners and rotate it clockwise
angle = rbbox[4]
a_cos = math.cos(angle)
a_sin = math.sin(angle)
center_x = rbbox[0]
center_y = rbbox[1]
x_d = rbbox[2]
y_d = rbbox[3]
corners_x = cuda.local.array((4,), dtype=numba.float32)
corners_y = cuda.local.array((4,), dtype=numba.float32)
corners_x[0] = -x_d / 2
corners_x[1] = -x_d / 2
corners_x[2] = x_d / 2
corners_x[3] = x_d / 2
corners_y[0] = -y_d / 2
corners_y[1] = y_d / 2
corners_y[2] = y_d / 2
corners_y[3] = -y_d / 2
for i in range(4):
corners[2 * i] = a_cos * corners_x[i] + a_sin * corners_y[i] + center_x
corners[2 * i +
1] = -a_sin * corners_x[i] + a_cos * corners_y[i] + center_y
@cuda.jit(device=True, inline=True)
def sort_vertex_in_convex_polygon(int_pts, num_of_inter):
if num_of_inter > 0:
center = cuda.local.array((2,), dtype=numba.float32)
center[:] = 0.0
for i in range(num_of_inter):
center[0] += int_pts[2 * i]
center[1] += int_pts[2 * i + 1]
center[0] /= num_of_inter
center[1] /= num_of_inter
v = cuda.local.array((2,), dtype=numba.float32)
vs = cuda.local.array((16,), dtype=numba.float32)
for i in range(num_of_inter):
v[0] = int_pts[2 * i] - center[0]
v[1] = int_pts[2 * i + 1] - center[1]
d = math.sqrt(v[0] * v[0] + v[1] * v[1])
v[0] = v[0] / d
v[1] = v[1] / d
if v[1] < 0:
v[0] = -2 - v[0]
vs[i] = v[0]
j = 0
temp = 0
for i in range(1, num_of_inter):
if vs[i - 1] > vs[i]:
temp = vs[i]
tx = int_pts[2 * i]
ty = int_pts[2 * i + 1]
j = i
while j > 0 and vs[j - 1] > temp:
vs[j] = vs[j - 1]
int_pts[j * 2] = int_pts[j * 2 - 2]
int_pts[j * 2 + 1] = int_pts[j * 2 - 1]
j -= 1
vs[j] = temp
int_pts[j * 2] = tx
int_pts[j * 2 + 1] = ty
@cuda.jit(device=True, inline=True)
def trangle_area(a, b, c):
return (
(a[0] - c[0]) * (b[1] - c[1]) - (a[1] - c[1]) * (b[0] - c[0])) / 2.0
@cuda.jit(device=True, inline=True)
def area(int_pts, num_of_inter):
area_val = 0.0
for i in range(num_of_inter - 2):
area_val += abs(
trangle_area(int_pts[:2], int_pts[2 * i + 2:2 * i + 4],
int_pts[2 * i + 4:2 * i + 6]))
return area_val
@cuda.jit(device=True, inline=True)
def inter(rbbox1, rbbox2):
corners1 = cuda.local.array((8,), dtype=numba.float32)
corners2 = cuda.local.array((8,), dtype=numba.float32)
intersection_corners = cuda.local.array((16,), dtype=numba.float32)
rbbox_to_corners(corners1, rbbox1)
rbbox_to_corners(corners2, rbbox2)
num_intersection = quadrilateral_intersection(corners1, corners2,
intersection_corners)
sort_vertex_in_convex_polygon(intersection_corners, num_intersection)
# print(intersection_corners.reshape([-1, 2])[:num_intersection])
return area(intersection_corners, num_intersection)
@cuda.jit('(float32[:], float32[:], int32)', device=True, inline=True)
def devRotateIoUEval(rbox1, rbox2, criterion=-1):
area1 = rbox1[2] * rbox1[3]
area2 = rbox2[2] * rbox2[3]
area_inter = inter(rbox1, rbox2)
if criterion == -1:
return area_inter / (area1 + area2 - area_inter)
elif criterion == 0:
return area_inter / area1
elif criterion == 1:
return area_inter / area2
else:
return area_inter
@cuda.jit(
'(int64, int64, float32[:], float32[:], float32[:], int32)',
fastmath=False)
def rotate_iou_kernel_eval(N,
K,
dev_boxes,
dev_query_boxes,
dev_iou,
criterion=-1):
threadsPerBlock = 8 * 8
row_start = cuda.blockIdx.x
col_start = cuda.blockIdx.y
tx = cuda.threadIdx.x
row_size = min(N - row_start * threadsPerBlock, threadsPerBlock)
col_size = min(K - col_start * threadsPerBlock, threadsPerBlock)
block_boxes = cuda.shared.array(shape=(64 * 5,), dtype=numba.float32)
block_qboxes = cuda.shared.array(shape=(64 * 5,), dtype=numba.float32)
dev_query_box_idx = threadsPerBlock * col_start + tx
dev_box_idx = threadsPerBlock * row_start + tx
if (tx < col_size):
block_qboxes[tx * 5 + 0] = dev_query_boxes[dev_query_box_idx * 5 + 0]
block_qboxes[tx * 5 + 1] = dev_query_boxes[dev_query_box_idx * 5 + 1]
block_qboxes[tx * 5 + 2] = dev_query_boxes[dev_query_box_idx * 5 + 2]
block_qboxes[tx * 5 + 3] = dev_query_boxes[dev_query_box_idx * 5 + 3]
block_qboxes[tx * 5 + 4] = dev_query_boxes[dev_query_box_idx * 5 + 4]
if (tx < row_size):
block_boxes[tx * 5 + 0] = dev_boxes[dev_box_idx * 5 + 0]
block_boxes[tx * 5 + 1] = dev_boxes[dev_box_idx * 5 + 1]
block_boxes[tx * 5 + 2] = dev_boxes[dev_box_idx * 5 + 2]
block_boxes[tx * 5 + 3] = dev_boxes[dev_box_idx * 5 + 3]
block_boxes[tx * 5 + 4] = dev_boxes[dev_box_idx * 5 + 4]
cuda.syncthreads()
if tx < row_size:
for i in range(col_size):
offset = row_start * threadsPerBlock * K + col_start * threadsPerBlock + tx * K + i
dev_iou[offset] = devRotateIoUEval(block_qboxes[i * 5:i * 5 + 5],
block_boxes[tx * 5:tx * 5 + 5],
criterion)
@numba.jit(nopython=True)
def div_up(m, n):
return m // n + (m % n > 0)
def rotate_iou_gpu_eval(boxes, query_boxes, criterion=-1, device_id=0):
"""rotated box iou running in gpu. 8x faster than cpu version
(take 5ms in one example with numba.cuda code).
convert from [this project](
https://github.com/hongzhenwang/RRPN-revise/tree/master/lib/rotation).
Args:
boxes (float tensor: [N, 5]): rbboxes. format: centers, dims,
angles(clockwise when positive)
query_boxes (float tensor: [K, 5]): [description]
device_id (int, optional): Defaults to 0. [description]
Returns:
[type]: [description]
"""
box_dtype = boxes.dtype
boxes = boxes.astype(np.float32)
query_boxes = query_boxes.astype(np.float32)
N = boxes.shape[0]
K = query_boxes.shape[0]
iou = np.zeros((N, K), dtype=np.float32)
if N == 0 or K == 0:
return iou
threadsPerBlock = 8 * 8
cuda.select_device(device_id)
blockspergrid = (div_up(N, threadsPerBlock), div_up(K, threadsPerBlock))
stream = cuda.stream()
with stream.auto_synchronize():
boxes_dev = cuda.to_device(boxes.reshape([-1]), stream)
query_boxes_dev = cuda.to_device(query_boxes.reshape([-1]), stream)
iou_dev = cuda.to_device(iou.reshape([-1]), stream)
rotate_iou_kernel_eval[blockspergrid, threadsPerBlock, stream](
N, K, boxes_dev, query_boxes_dev, iou_dev, criterion)
iou_dev.copy_to_host(iou.reshape([-1]), stream=stream)
return iou.astype(boxes.dtype)
@numba.jit
def get_thresholds(scores: np.ndarray, num_gt, num_sample_pts=41):
scores.sort()
scores = scores[::-1]
current_recall = 0
thresholds = []
for i, score in enumerate(scores):
l_recall = (i + 1) / num_gt
if i < (len(scores) - 1):
r_recall = (i + 2) / num_gt
else:
r_recall = l_recall
if (((r_recall - current_recall) < (current_recall - l_recall))
and (i < (len(scores) - 1))):
continue
# recall = l_recall
thresholds.append(score)
current_recall += 1 / (num_sample_pts - 1.0)
# print(len(thresholds), len(scores), num_gt)
return thresholds
def clean_data(gt_anno, dt_anno, current_class, difficulty):
CLASS_NAMES = [
'car', 'pedestrian', 'cyclist', 'van', 'person_sitting', 'car',
'tractor', 'trailer'
]
MIN_HEIGHT = [40, 25, 25]
MAX_OCCLUSION = [0, 1, 2]
MAX_TRUNCATION = [0.15, 0.3, 0.5]
dc_bboxes, ignored_gt, ignored_dt = [], [], []
current_cls_name = CLASS_NAMES[current_class].lower()
num_gt = len(gt_anno["name"])
num_dt = len(dt_anno["name"])
num_valid_gt = 0
for i in range(num_gt):
bbox = gt_anno["bbox"][i]
gt_name = gt_anno["name"][i].lower()
height = bbox[3] - bbox[1]
valid_class = -1
if (gt_name == current_cls_name):
valid_class = 1
elif (current_cls_name == "Pedestrian".lower()
and "Person_sitting".lower() == gt_name):
valid_class = 0
elif (current_cls_name == "Car".lower() and "Van".lower() == gt_name):
valid_class = 0
else:
valid_class = -1
ignore = False
if ((gt_anno["occluded"][i] > MAX_OCCLUSION[difficulty])
or (gt_anno["truncated"][i] > MAX_TRUNCATION[difficulty])
or (height <= MIN_HEIGHT[difficulty])):
# if gt_anno["difficulty"][i] > difficulty or gt_anno["difficulty"][i] == -1:
ignore = True
if valid_class == 1 and not ignore:
ignored_gt.append(0)
num_valid_gt += 1
elif (valid_class == 0 or (ignore and (valid_class == 1))):
ignored_gt.append(1)
else:
ignored_gt.append(-1)
# for i in range(num_gt):
if gt_anno["name"][i] == "DontCare":
dc_bboxes.append(gt_anno["bbox"][i])
for i in range(num_dt):
if (dt_anno["name"][i].lower() == current_cls_name):
valid_class = 1
else:
valid_class = -1
height = abs(dt_anno["bbox"][i, 3] - dt_anno["bbox"][i, 1])
if height < MIN_HEIGHT[difficulty]:
ignored_dt.append(1)
elif valid_class == 1:
ignored_dt.append(0)
else:
ignored_dt.append(-1)
return num_valid_gt, ignored_gt, ignored_dt, dc_bboxes
@numba.jit(nopython=True)
def image_box_overlap(boxes, query_boxes, criterion=-1):
N = boxes.shape[0]
K = query_boxes.shape[0]
overlaps = np.zeros((N, K), dtype=boxes.dtype)
for k in range(K):
qbox_area = ((query_boxes[k, 2] - query_boxes[k, 0]) *
(query_boxes[k, 3] - query_boxes[k, 1]))
for n in range(N):
iw = (min(boxes[n, 2], query_boxes[k, 2]) - max(
boxes[n, 0], query_boxes[k, 0]))
if iw > 0:
ih = (min(boxes[n, 3], query_boxes[k, 3]) - max(
boxes[n, 1], query_boxes[k, 1]))
if ih > 0:
if criterion == -1:
ua = (
(boxes[n, 2] - boxes[n, 0]) *
(boxes[n, 3] - boxes[n, 1]) + qbox_area - iw * ih)
elif criterion == 0:
ua = ((boxes[n, 2] - boxes[n, 0]) *
(boxes[n, 3] - boxes[n, 1]))
elif criterion == 1:
ua = qbox_area
else:
ua = 1.0
overlaps[n, k] = iw * ih / ua
return overlaps
def bev_box_overlap(boxes, qboxes, criterion=-1, stable=True):
# riou = box_np_ops.riou_cc(boxes, qboxes)
riou = rotate_iou_gpu_eval(boxes, qboxes, criterion)
return riou
@numba.jit(nopython=True, parallel=True)
def box3d_overlap_kernel(boxes,
qboxes,
rinc,
criterion=-1,
z_axis=1,
z_center=1.0):
"""
z_axis: the z (height) axis.
z_center: unified z (height) center of box.
"""
N, K = boxes.shape[0], qboxes.shape[0]
for i in range(N):
for j in range(K):
if rinc[i, j] > 0:
min_z = min(
boxes[i, z_axis] + boxes[i, z_axis + 3] * (1 - z_center),
qboxes[j, z_axis] + qboxes[j, z_axis + 3] * (1 - z_center))
max_z = max(
boxes[i, z_axis] - boxes[i, z_axis + 3] * z_center,
qboxes[j, z_axis] - qboxes[j, z_axis + 3] * z_center)
iw = min_z - max_z
if iw > 0:
area1 = boxes[i, 3] * boxes[i, 4] * boxes[i, 5]
area2 = qboxes[j, 3] * qboxes[j, 4] * qboxes[j, 5]
inc = iw * rinc[i, j]
if criterion == -1:
ua = (area1 + area2 - inc)
elif criterion == 0:
ua = area1
elif criterion == 1:
ua = area2
else:
ua = 1.0
rinc[i, j] = inc / ua
else:
rinc[i, j] = 0.0
def box3d_overlap(boxes, qboxes, criterion=-1, z_axis=1, z_center=1.0):
"""kitti camera format z_axis=1.
"""
bev_axes = list(range(7))
bev_axes.pop(z_axis + 3)
bev_axes.pop(z_axis)
# t = time.time()
# rinc = box_np_ops.rinter_cc(boxes[:, bev_axes], qboxes[:, bev_axes])
rinc = rotate_iou_gpu_eval(boxes[:, bev_axes], qboxes[:, bev_axes], 2)
# print("riou time", time.time() - t)
box3d_overlap_kernel(boxes, qboxes, rinc, criterion, z_axis, z_center)
return rinc
@numba.jit(nopython=True)
def compute_statistics_jit(overlaps,
gt_datas,
dt_datas,
ignored_gt,
ignored_det,
dc_bboxes,
metric,
min_overlap,
thresh=0,
compute_fp=False,
compute_aos=False):
det_size = dt_datas.shape[0]
gt_size = gt_datas.shape[0]
dt_scores = dt_datas[:, -1]
dt_alphas = dt_datas[:, 4]
gt_alphas = gt_datas[:, 4]
dt_bboxes = dt_datas[:, :4]
# gt_bboxes = gt_datas[:, :4]
assigned_detection = [False] * det_size
ignored_threshold = [False] * det_size
if compute_fp:
for i in range(det_size):
if (dt_scores[i] < thresh):
ignored_threshold[i] = True
NO_DETECTION = -10000000
tp, fp, fn, similarity = 0, 0, 0, 0
# thresholds = [0.0]
# delta = [0.0]
thresholds = np.zeros((gt_size,))
thresh_idx = 0
delta = np.zeros((gt_size,))
delta_idx = 0
for i in range(gt_size):
if ignored_gt[i] == -1:
continue
det_idx = -1
valid_detection = NO_DETECTION
max_overlap = 0
assigned_ignored_det = False
for j in range(det_size):
if (ignored_det[j] == -1):
continue
if (assigned_detection[j]):
continue
if (ignored_threshold[j]):
continue
overlap = overlaps[j, i]
dt_score = dt_scores[j]
if (not compute_fp and (overlap > min_overlap)
and dt_score > valid_detection):
det_idx = j
valid_detection = dt_score
elif (compute_fp and (overlap > min_overlap)
and (overlap > max_overlap or assigned_ignored_det)
and ignored_det[j] == 0):
max_overlap = overlap
det_idx = j
valid_detection = 1
assigned_ignored_det = False
elif (compute_fp and (overlap > min_overlap)
and (valid_detection == NO_DETECTION)
and ignored_det[j] == 1):
det_idx = j
valid_detection = 1
assigned_ignored_det = True
if (valid_detection == NO_DETECTION) and ignored_gt[i] == 0:
fn += 1
elif ((valid_detection != NO_DETECTION)
and (ignored_gt[i] == 1 or ignored_det[det_idx] == 1)):
assigned_detection[det_idx] = True
elif valid_detection != NO_DETECTION:
# only a tp add a threshold.
tp += 1
# thresholds.append(dt_scores[det_idx])
thresholds[thresh_idx] = dt_scores[det_idx]
thresh_idx += 1
if compute_aos:
# delta.append(gt_alphas[i] - dt_alphas[det_idx])
delta[delta_idx] = gt_alphas[i] - dt_alphas[det_idx]
delta_idx += 1
assigned_detection[det_idx] = True
if compute_fp:
for i in range(det_size):
if (not (assigned_detection[i] or ignored_det[i] == -1
or ignored_det[i] == 1 or ignored_threshold[i])):
fp += 1
nstuff = 0
if metric == 0:
overlaps_dt_dc = image_box_overlap(dt_bboxes, dc_bboxes, 0)
for i in range(dc_bboxes.shape[0]):
for j in range(det_size):
if (assigned_detection[j]):
continue
if (ignored_det[j] == -1 or ignored_det[j] == 1):
continue
if (ignored_threshold[j]):
continue
if overlaps_dt_dc[j, i] > min_overlap:
assigned_detection[j] = True
nstuff += 1
fp -= nstuff
if compute_aos:
tmp = np.zeros((fp + delta_idx,))
# tmp = [0] * fp
for i in range(delta_idx):
tmp[i + fp] = (1.0 + np.cos(delta[i])) / 2.0
# tmp.append((1.0 + np.cos(delta[i])) / 2.0)
# assert len(tmp) == fp + tp
# assert len(delta) == tp
if tp > 0 or fp > 0:
similarity = np.sum(tmp)
else:
similarity = -1
return tp, fp, fn, similarity, thresholds[:thresh_idx]
def get_split_parts(num, num_part):
same_part = num // num_part
remain_num = num % num_part
if remain_num == 0:
return [same_part] * num_part
else:
return [same_part] * num_part + [remain_num]
@numba.jit(nopython=True)
def fused_compute_statistics(overlaps,
pr,
gt_nums,
dt_nums,
dc_nums,
gt_datas,
dt_datas,
dontcares,
ignored_gts,
ignored_dets,
metric,
min_overlap,
thresholds,
compute_aos=False):
gt_num = 0
dt_num = 0
dc_num = 0
for i in range(gt_nums.shape[0]):
for t, thresh in enumerate(thresholds):
overlap = overlaps[dt_num:dt_num + dt_nums[i], gt_num:gt_num +
gt_nums[i]]
gt_data = gt_datas[gt_num:gt_num + gt_nums[i]]
dt_data = dt_datas[dt_num:dt_num + dt_nums[i]]
ignored_gt = ignored_gts[gt_num:gt_num + gt_nums[i]]
ignored_det = ignored_dets[dt_num:dt_num + dt_nums[i]]
dontcare = dontcares[dc_num:dc_num + dc_nums[i]]
tp, fp, fn, similarity, _ = compute_statistics_jit(
overlap,
gt_data,
dt_data,
ignored_gt,
ignored_det,
dontcare,
metric,
min_overlap=min_overlap,
thresh=thresh,
compute_fp=True,
compute_aos=compute_aos)
pr[t, 0] += tp
pr[t, 1] += fp
pr[t, 2] += fn
if similarity != -1:
pr[t, 3] += similarity
gt_num += gt_nums[i]
dt_num += dt_nums[i]
dc_num += dc_nums[i]
def calculate_iou_partly(gt_annos,
dt_annos,
metric,
num_parts=50,
z_axis=1,
z_center=1.0):
"""fast iou algorithm. this function can be used independently to
do result analysis.
Args:
gt_annos: dict, must from get_label_annos() in kitti_common.py
dt_annos: dict, must from get_label_annos() in kitti_common.py
metric: eval type. 0: bbox, 1: bev, 2: 3d
num_parts: int. a parameter for fast calculate algorithm
z_axis: height axis. kitti camera use 1, lidar use 2.
"""
assert len(gt_annos) == len(dt_annos)
total_dt_num = np.stack([len(a["name"]) for a in dt_annos], 0)
total_gt_num = np.stack([len(a["name"]) for a in gt_annos], 0)
num_examples = len(gt_annos)
split_parts = get_split_parts(num_examples, num_parts)
parted_overlaps = []
example_idx = 0
bev_axes = list(range(3))
bev_axes.pop(z_axis)
for num_part in split_parts:
gt_annos_part = gt_annos[example_idx:example_idx + num_part]
dt_annos_part = dt_annos[example_idx:example_idx + num_part]
if metric == 0:
gt_boxes = np.concatenate([a["bbox"] for a in gt_annos_part], 0)
dt_boxes = np.concatenate([a["bbox"] for a in dt_annos_part], 0)
overlap_part = image_box_overlap(gt_boxes, dt_boxes)
elif metric == 1:
loc = np.concatenate(
[a["location"][:, bev_axes] for a in gt_annos_part], 0)
dims = np.concatenate(
[a["dimensions"][:, bev_axes] for a in gt_annos_part], 0)
rots = np.concatenate([a["rotation_y"] for a in gt_annos_part], 0)
gt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]],
axis=1)
loc = np.concatenate(
[a["location"][:, bev_axes] for a in dt_annos_part], 0)
dims = np.concatenate(
[a["dimensions"][:, bev_axes] for a in dt_annos_part], 0)
rots = np.concatenate([a["rotation_y"] for a in dt_annos_part], 0)
dt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]],
axis=1)
overlap_part = bev_box_overlap(gt_boxes,
dt_boxes).astype(np.float64)
elif metric == 2:
loc = np.concatenate([a["location"] for a in gt_annos_part], 0)
dims = np.concatenate([a["dimensions"] for a in gt_annos_part], 0)
rots = np.concatenate([a["rotation_y"] for a in gt_annos_part], 0)
gt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]],
axis=1)
loc = np.concatenate([a["location"] for a in dt_annos_part], 0)
dims = np.concatenate([a["dimensions"] for a in dt_annos_part], 0)
rots = np.concatenate([a["rotation_y"] for a in dt_annos_part], 0)
dt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]],
axis=1)
overlap_part = box3d_overlap(
gt_boxes, dt_boxes, z_axis=z_axis,
z_center=z_center).astype(np.float64)
else:
raise ValueError("unknown metric")
parted_overlaps.append(overlap_part)
example_idx += num_part
overlaps = []
example_idx = 0
for j, num_part in enumerate(split_parts):
gt_annos_part = gt_annos[example_idx:example_idx + num_part]
dt_annos_part = dt_annos[example_idx:example_idx + num_part]
gt_num_idx, dt_num_idx = 0, 0
for i in range(num_part):
gt_box_num = total_gt_num[example_idx + i]
dt_box_num = total_dt_num[example_idx + i]
overlaps.append(
parted_overlaps[j][gt_num_idx:gt_num_idx +
gt_box_num, dt_num_idx:dt_num_idx +
dt_box_num])
gt_num_idx += gt_box_num
dt_num_idx += dt_box_num
example_idx += num_part
return overlaps, parted_overlaps, total_gt_num, total_dt_num
def _prepare_data(gt_annos, dt_annos, current_class, difficulty):
gt_datas_list = []
dt_datas_list = []
total_dc_num = []
ignored_gts, ignored_dets, dontcares = [], [], []
total_num_valid_gt = 0
for i in range(len(gt_annos)):
rets = clean_data(gt_annos[i], dt_annos[i], current_class, difficulty)
num_valid_gt, ignored_gt, ignored_det, dc_bboxes = rets
ignored_gts.append(np.array(ignored_gt, dtype=np.int64))
ignored_dets.append(np.array(ignored_det, dtype=np.int64))
if len(dc_bboxes) == 0:
dc_bboxes = np.zeros((0, 4)).astype(np.float64)
else:
dc_bboxes = np.stack(dc_bboxes, 0).astype(np.float64)
total_dc_num.append(dc_bboxes.shape[0])
dontcares.append(dc_bboxes)
total_num_valid_gt += num_valid_gt
gt_datas = np.concatenate(
[gt_annos[i]["bbox"], gt_annos[i]["alpha"][..., np.newaxis]], 1)
dt_datas = np.concatenate([
dt_annos[i]["bbox"], dt_annos[i]["alpha"][..., np.newaxis],
dt_annos[i]["score"][..., np.newaxis]
], 1)
gt_datas_list.append(gt_datas)
dt_datas_list.append(dt_datas)
total_dc_num = np.stack(total_dc_num, axis=0)
return (gt_datas_list, dt_datas_list, ignored_gts, ignored_dets, dontcares,
total_dc_num, total_num_valid_gt)
def eval_class_v3(gt_annos,
dt_annos,
current_classes,
difficultys,
metric,
min_overlaps,
compute_aos=False,
z_axis=1,
z_center=1.0,
num_parts=50):
"""Kitti eval. support 2d/bev/3d/aos eval. support 0.5:0.05:0.95 coco AP.
Args:
gt_annos: dict, must from get_label_annos() in kitti_common.py
dt_annos: dict, must from get_label_annos() in kitti_common.py
current_class: int, 0: car, 1: pedestrian, 2: cyclist
difficulty: int. eval difficulty, 0: easy, 1: normal, 2: hard
metric: eval type. 0: bbox, 1: bev, 2: 3d
min_overlap: float, min overlap. official:
[[0.7, 0.5, 0.5], [0.7, 0.5, 0.5], [0.7, 0.5, 0.5]]
format: [metric, class]. choose one from matrix above.
num_parts: int. a parameter for fast calculate algorithm
Returns:
dict of recall, precision and aos
"""
assert len(gt_annos) == len(dt_annos)
num_examples = len(gt_annos)
split_parts = get_split_parts(num_examples, num_parts)
rets = calculate_iou_partly(
dt_annos,
gt_annos,
metric,
num_parts,
z_axis=z_axis,
z_center=z_center)
overlaps, parted_overlaps, total_dt_num, total_gt_num = rets
N_SAMPLE_PTS = 41
num_minoverlap = len(min_overlaps)
num_class = len(current_classes)
num_difficulty = len(difficultys)
precision = np.zeros(
[num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS])
recall = np.zeros(
[num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS])
aos = np.zeros([num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS])
all_thresholds = np.zeros([num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS])
for m, current_class in enumerate(current_classes):
for l, difficulty in enumerate(difficultys):
rets = _prepare_data(gt_annos, dt_annos, current_class, difficulty)
(gt_datas_list, dt_datas_list, ignored_gts, ignored_dets,
dontcares, total_dc_num, total_num_valid_gt) = rets
for k, min_overlap in enumerate(min_overlaps[:, metric, m]):
thresholdss = []
for i in range(len(gt_annos)):
rets = compute_statistics_jit(
overlaps[i],
gt_datas_list[i],
dt_datas_list[i],
ignored_gts[i],
ignored_dets[i],
dontcares[i],
metric,
min_overlap=min_overlap,
thresh=0.0,
compute_fp=False)
tp, fp, fn, similarity, thresholds = rets
thresholdss += thresholds.tolist()
thresholdss = np.array(thresholdss)
thresholds = get_thresholds(thresholdss, total_num_valid_gt)
thresholds = np.array(thresholds)
# print(thresholds)
all_thresholds[m, l, k, :len(thresholds)] = thresholds
pr = np.zeros([len(thresholds), 4])
idx = 0
for j, num_part in enumerate(split_parts):
gt_datas_part = np.concatenate(
gt_datas_list[idx:idx + num_part], 0)
dt_datas_part = np.concatenate(
dt_datas_list[idx:idx + num_part], 0)
dc_datas_part = np.concatenate(
dontcares[idx:idx + num_part], 0)
ignored_dets_part = np.concatenate(
ignored_dets[idx:idx + num_part], 0)
ignored_gts_part = np.concatenate(
ignored_gts[idx:idx + num_part], 0)
fused_compute_statistics(
parted_overlaps[j],
pr,
total_gt_num[idx:idx + num_part],
total_dt_num[idx:idx + num_part],
total_dc_num[idx:idx + num_part],
gt_datas_part,
dt_datas_part,
dc_datas_part,
ignored_gts_part,
ignored_dets_part,
metric,
min_overlap=min_overlap,
thresholds=thresholds,
compute_aos=compute_aos)
idx += num_part
for i in range(len(thresholds)):
# recall[m, l, k, i] = pr[i, 0] / (pr[i, 0] + pr[i, 2])
precision[m, l, k, i] = pr[i, 0] / (pr[i, 0] + pr[i, 1])
if compute_aos:
aos[m, l, k, i] = pr[i, 3] / (pr[i, 0] + pr[i, 1])
for i in range(len(thresholds)):
precision[m, l, k, i] = np.max(
precision[m, l, k, i:], axis=-1)
# recall[m, l, k, i] = np.max(recall[m, l, k, :i + 1], axis=-1)
if compute_aos:
aos[m, l, k, i] = np.max(aos[m, l, k, i:], axis=-1)
# use interp to calculate recall
"""
current_recalls = np.linspace(0, 1, 41)
prec_unique, inds = np.unique(precision[m, l, k], return_index=True)
current_recalls = current_recalls[inds]
f = interp1d(prec_unique, current_recalls)
precs_for_recall = np.linspace(0, 1, 41)
max_prec = np.max(precision[m, l, k])
valid_prec = precs_for_recall < max_prec
num_valid_prec = valid_prec.sum()
recall[m, l, k, :num_valid_prec] = f(precs_for_recall[valid_prec])
"""
ret_dict = {
"recall": recall, # [num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS]
"precision": precision,
"orientation": aos,
"thresholds": all_thresholds,
"min_overlaps": min_overlaps,
}
return ret_dict
def get_mAP(prec):
sums = 0
if AP_mode == 40:
# for i in range(0, prec.shape[-1], 1):
for i in range(1, prec.shape[-1], 1):
sums = sums + prec[..., i]
return sums / 40 * 100
if AP_mode == 11:
for i in range(0, prec.shape[-1], 4):
sums = sums + prec[..., i]
return sums / 11 * 100
def do_eval_v2(gt_annos,
dt_annos,
current_classes,
min_overlaps,
compute_aos=False,
difficultys=(0, 1, 2),
z_axis=1,
z_center=1.0):
# min_overlaps: [num_minoverlap, metric, num_class]
ret = eval_class_v3(
gt_annos,
dt_annos,
current_classes,
difficultys,
0,
min_overlaps,
compute_aos,
z_axis=z_axis,
z_center=z_center)
# ret: [num_class, num_diff, num_minoverlap, num_sample_points]
mAP_bbox = get_mAP(ret["precision"])
mAP_aos = None
if compute_aos:
mAP_aos = get_mAP(ret["orientation"])
ret = eval_class_v3(
gt_annos,
dt_annos,
current_classes,
difficultys,
1,
min_overlaps,
z_axis=z_axis,
z_center=z_center)
mAP_bev = get_mAP(ret["precision"])
ret = eval_class_v3(
gt_annos,
dt_annos,