-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
166 lines (136 loc) · 5.41 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
class maneger():
def __init__(self):
from PIL import Image, ImageFont, ImageDraw
import os
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as tt
import models
import json
import random
import time
self.Image = Image
self.ImageFont = ImageFont
self.ImageDraw = ImageDraw
self.os = os
self.cv2 = cv2
self.np = np
self.torch = torch
self.nn = nn
self.F = F
self.tt = tt
self.models = models
self.json = json
self.random = random
self.time = time
self.lb = ""
self.lb_status = False
self.tm = 0
self.lt = ""
self.pin = False
self.class_labels = ['기쁨', '당황', '분노', '불안', '상처', '슬픔', '중립']
self.class_labels_dict = {'기쁨': 0, '당황': 1, '분노': 2, '불안': 3, '상처': 4, '슬픔': 5, '중립': 6}
self.count = {"기쁨": 0, "당황": 0, "분노": 0, "불안": 0, "상처": 0, "슬픔": 0, "중립": 0}
self.face_classifier = cv2.CascadeClassifier('face_classifier.xml')
self.display_color = (246, 189, 86)
f=open("letters.json", "r", encoding="utf-8")
self.letter = json.load(f)
f.close()
pass
def get_letter(self):
if self.lb == "":
return ""
return self.letter[self.lb][self.random.randint(0, len(self.letter[self.lb])-1)]
def main(self):
model_state = self.torch.load("model.pth", map_location=self.torch.device("cpu"))
model = self.models.getModel("emotionnet")
model.load_state_dict(model_state['model'])
cap = self.cv2.VideoCapture(0)
while True:
#print("COUNT:", self.count, "TM: ", self.tm, "LT: ", self.lt, "LB: ", self.lb, "PIN: ", self.pin, "LB_STATUS: ", self.lb_status)
if self.lb_status == False:
self.count = {"기쁨": 0, "당황": 0, "분노": 0, "불안": 0, "상처": 0, "슬픔": 0, "중립": 0}
self.tm = 0
self.lt = ""
self.pin = False
elif self.pin == False:
#check the time is after the two seconds
if self.time.time() - self.tm > 2:
print("TIMEOUT 2SEC")
self.tm = self.time.time()
#check largest value in the count
max_value = 0
for key in self.count:
if self.count[key] > max_value:
max_value = self.count[key]
self.lb = key
self.lt = self.get_letter()
self.pin = True
else:
if self.time.time() - self.tm > 10:
print("TIMEOUT 10SEC")
self.tm = 0
self.lt = ""
self.pin = False
self.lb_status = False
self.count = {"기쁨": 0, "당황": 0, "분노": 0, "불안": 0, "상처": 0, "슬픔": 0, "중립": 0}
ret, frame = cap.read()
frame = self.cv2.flip(frame, 1)
gray = self.cv2.cvtColor(frame, self.cv2.COLOR_BGR2GRAY)
faces = self.face_classifier.detectMultiScale(gray, 1.3, 5)
if faces == ():
self.lb_status = False
for (x, y, w, h) in faces:
self.cv2.rectangle(frame, (x, y), (x+w, y+h), self.display_color, 2)
roi_gray = gray[y:y+h, x:x+w]
roi_gray = self.cv2.resize(roi_gray, (48, 48),
interpolation=self.cv2.INTER_AREA)
if self.np.sum([roi_gray]) != 0:
roi = self.tt.functional.to_pil_image(roi_gray)
roi = self.tt.functional.to_grayscale(roi)
roi = self.tt.ToTensor()(roi).unsqueeze(0)
# make a prediction on the ROI
tensor = model(roi)
probs = self.torch.exp(tensor).detach().numpy()
prob = self.np.max(probs) * 100
pred = self.torch.max(tensor, dim=1)[1].tolist()
#append the prediction to the count
self.count[self.class_labels[pred[0]]] += 1
if self.lb_status == False:
self.tm = self.time.time()
self.lb_status = True
if self.lb_status == False:
self.lb = ""
#print(self.lb)
cap.release()
cv2.destroyAllWindows()
def softmax(self, x):
e_x = self.np.exp(x - self.np.max(x))
return e_x / e_x.sum()
from flask import *
from flask_compress import Compress
import time
from threading import Thread
import os
import json
compress = Compress()
app = Flask(__name__)
app.secret_key = os.urandom(12)
m = maneger()
@app.route('/')
def index():
return render_template('index.html')
@app.route('/api')
def api():
rtn = {}
rtn.update({"emotion": m.lb})
rtn.update({"letter": m.lt})
# dump with utf-8
return json.dumps(rtn, ensure_ascii=False)
if __name__ == '__main__':
Thread(target=m.main).start()
app.debug = True
app.run(host="0.0.0.0", threaded=True, port=8000, use_reloader=False)