-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_qlora.py
222 lines (197 loc) · 8.18 KB
/
train_qlora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from transformers import AutoTokenizer, BitsAndBytesConfig
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from transformers import (
set_seed,
HfArgumentParser,
TrainingArguments,
AutoModelForCausalLM
)
import argparse
from loguru import logger
import os
from os.path import join
import torch
import bitsandbytes as bnb
from collections import defaultdict
from component.collator import SFTDataCollator
from component.dataset import SFTDataset, ChatGLM2SFTDataset
from component.argument import QLoRAArguments
from component.trainer import LoRATrainer
from component.loss import TargetLMLoss
def verify_model_dtype(model):
"""
查看模型种各种类型的参数的情况
"""
dtype2param_num = defaultdict(int) # 每种数据类型的参数量
dtype2param_name = defaultdict(list) # 每种数据类型的参数名称
dtype2trainable_param_num = defaultdict(int) # 每种数据类型参与训练的参数量
dtype2trainable_param_name = defaultdict(list) # 每种数据类型参与训练的参数名称
for name, p in model.named_parameters():
dtype = p.dtype
dtype2param_num[dtype] += p.numel()
dtype2param_name[dtype].append(name)
if p.requires_grad:
dtype2trainable_param_num[dtype] += p.numel()
dtype2trainable_param_name[dtype].append(name)
# 统计全部参数中,各种类型参数分布
total = 0
print('verify all params of the model')
for k, v in dtype2param_num.items():
total += v
for k, v in dtype2param_num.items():
print(k, v, v / total)
for k, v in dtype2trainable_param_name.items():
print(k, v)
print()
# 统计可训练参数中,各种类型参数分布
print('verify trainable params the model')
total_trainable = 0
for k, v in dtype2trainable_param_num.items():
total_trainable += v
for k, v in dtype2trainable_param_num.items():
print(k, v, v / total_trainable)
for k, v in dtype2trainable_param_num.items():
print(k, v)
def find_all_linear_names(model):
"""
找出所有全连接层,为所有全连接添加adapter
"""
cls = bnb.nn.Linear4bit
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
return list(lora_module_names)
def setup_everything():
parser = argparse.ArgumentParser()
parser.add_argument("--train_args_file", type=str, default='train_args/baichuan-sft-qlora.json', help="")
args = parser.parse_args()
train_args_file = args.train_args_file
# 读取训练的参数配置
parser = HfArgumentParser((QLoRAArguments, TrainingArguments))
# 解析得到自定义参数,以及自带参数
args, training_args = parser.parse_json_file(json_file=train_args_file)
# 创建输出目录
if not os.path.exists(training_args.output_dir):
os.makedirs(training_args.output_dir)
# logger.add(join(training_args.output_dir, 'train.log'))
# logger.info("train_args:{}".format(training_args))
# 设置随机种子
set_seed(training_args.seed)
return args, training_args
def init_components(args, training_args):
"""
初始化各个组件
"""
logger.info('Initializing components...')
# 下面的设置至关重要,否则无法多卡训练
# world_size = int(os.environ.get("WORLD_SIZE", 1))
# ddp = world_size != 1
# device_map = "auto"
# # if we are in a distributed setting, we need to set the device map and max memory per device
# if os.environ.get('LOCAL_RANK') is not None:
# local_rank = int(os.environ.get('LOCAL_RANK', '0'))
# device_map = {'': local_rank}
training_args.ddp_find_unused_parameters = False
local_rank = int(os.environ.get('LOCAL_RANK', '0'))
device_map = {'': local_rank}
# 加载模型
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
device_map=device_map,
load_in_4bit=True,
torch_dtype=torch.float16,
trust_remote_code=True,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
),
)
# 加载tokenzier
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
trust_remote_code=True,
# llama不支持fast
use_fast=False if model.config.model_type == 'llama' else True
)
# QWenTokenizer比较特殊,pad_token_id、bos_token_id、eos_token_id均为None。eod_id对应的token为<|endoftext|>
if tokenizer.__class__.__name__ == 'QWenTokenizer':
tokenizer.pad_token_id = tokenizer.eod_id
tokenizer.bos_token_id = tokenizer.eod_id
tokenizer.eos_token_id = tokenizer.eod_id
# ChatGLMTokenizer不需要设置,仅设置其他tokenizer
elif tokenizer.__class__.__name__ != 'ChatGLMTokenizer':
assert tokenizer.eos_token_id is not None
assert tokenizer.bos_token_id is not None
tokenizer.pad_token_id = tokenizer.eos_token_id if tokenizer.pad_token_id is None else tokenizer.pad_token_id
# # 部分tokenizer没有pad_token_id
# if tokenizer.pad_token_id is None:
# tokenizer.pad_token_id = tokenizer.unk_token_id
# # 部分tokenizer的pad_token_id与eos_token_id相同,如InternLM,会导致无法计算eos_token_id的loss。将pad_token_id设为unk_token_id
# if tokenizer.pad_token_id == tokenizer.eos_token_id and tokenizer.unk_token_id is not None:
# tokenizer.pad_token_id = tokenizer.unk_token_id
# # 如果两者相同,模型训练时不会计算eos_token_id的loss
# if tokenizer.pad_token_id == tokenizer.eos_token_id:
# raise Exception('pad_token_id should not be equal to eos_token_id')
# casts all the non int8 modules to full precision (fp32) for stability
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
print(f'memory footprint of model: {model.get_memory_footprint()/(1024*1024*1024)} GB')
# 找到所有需要插入adapter的全连接层
target_modules = find_all_linear_names(model)
# 初始化lora配置
config = LoraConfig(
r=args.lora_rank,
lora_alpha=args.lora_alpha,
target_modules=target_modules,
lora_dropout=args.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
model.print_trainable_parameters()
model.config.torch_dtype = torch.float32
# 查看模型种各种类型的参数的情况
verify_model_dtype(model)
# 初始化损失函数
loss_func = TargetLMLoss(ignore_index=-100)
# 指加载训练集
if model.config.model_type == 'chatglm':
train_dataset = ChatGLM2SFTDataset(args.train_file, tokenizer, args.max_seq_length)
else:
train_dataset = SFTDataset(args.train_file, tokenizer, args.max_seq_length)
data_collator = SFTDataCollator(tokenizer, args.max_seq_length)
# 初始化Trainer
trainer = LoRATrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
# tokenizer=tokenizer,
data_collator=data_collator,
compute_loss=loss_func
)
return trainer
def main():
# 进行一些配置和检查
args, training_args = setup_everything()
# 加载各种组件
trainer = init_components(args, training_args)
# 开始训练
logger.info("*** starting training ***")
train_result = trainer.train()
# 保存最好的checkpoint
final_save_path = join(training_args.output_dir, 'final')
trainer.save_model(final_save_path) # Saves the tokenizer too
# 保存训练指标
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
if __name__ == "__main__":
main()