矩形蛋糕的高度为 h
且宽度为 w
,给你两个整数数组 horizontalCuts
和 verticalCuts
,其中:
-
horizontalCuts[i]
是从矩形蛋糕顶部到第i
个水平切口的距离 verticalCuts[j]
是从矩形蛋糕的左侧到第j
个竖直切口的距离
请你按数组 horizontalCuts
和 verticalCuts
中提供的水平和竖直位置切割后,请你找出 面积最大 的那份蛋糕,并返回其 面积 。由于答案可能是一个很大的数字,因此需要将结果 对 109 + 7
取余 后返回。
示例 1:
输入:h = 5, w = 4, horizontalCuts = [1,2,4], verticalCuts = [1,3] 输出:4 解释:上图所示的矩阵蛋糕中,红色线表示水平和竖直方向上的切口。切割蛋糕后,绿色的那份蛋糕面积最大。
示例 2:
输入:h = 5, w = 4, horizontalCuts = [3,1], verticalCuts = [1] 输出:6 解释:上图所示的矩阵蛋糕中,红色线表示水平和竖直方向上的切口。切割蛋糕后,绿色和黄色的两份蛋糕面积最大。
示例 3:
输入:h = 5, w = 4, horizontalCuts = [3], verticalCuts = [3] 输出:9
提示:
2 <= h, w <= 109
1 <= horizontalCuts.length <= min(h - 1, 105)
1 <= verticalCuts.length <= min(w - 1, 105)
1 <= horizontalCuts[i] < h
1 <= verticalCuts[i] < w
- 题目数据保证
horizontalCuts
中的所有元素各不相同 - 题目数据保证
verticalCuts
中的所有元素各不相同
方法一:排序
先分别对 horizontalCuts
和 verticalCuts
排序,然后遍历数组,计算相邻两个元素的差值,取最大值的乘积即可。
时间复杂度 horizontalCuts
和 verticalCuts
的长度。
class Solution:
def maxArea(self, h: int, w: int, horizontalCuts: List[int], verticalCuts: List[int]) -> int:
horizontalCuts.extend([0, h])
verticalCuts.extend([0, w])
horizontalCuts.sort()
verticalCuts.sort()
x = max(b - a for a, b in pairwise(horizontalCuts))
y = max(b - a for a, b in pairwise(verticalCuts))
return (x * y) % (10**9 + 7)
class Solution {
private static final int MOD = (int) 1e9 + 7;
public int maxArea(int h, int w, int[] horizontalCuts, int[] verticalCuts) {
Arrays.sort(horizontalCuts);
Arrays.sort(verticalCuts);
int m = horizontalCuts.length;
int n = verticalCuts.length;
long x = Math.max(horizontalCuts[0], h - horizontalCuts[m - 1]);
long y = Math.max(verticalCuts[0], w - verticalCuts[n - 1]);
for (int i = 1; i < m; ++i) {
x = Math.max(x, horizontalCuts[i] - horizontalCuts[i - 1]);
}
for (int i = 1; i < n; ++i) {
y = Math.max(y, verticalCuts[i] - verticalCuts[i - 1]);
}
return (int) ((x * y) % MOD);
}
}
class Solution {
public:
int maxArea(int h, int w, vector<int>& horizontalCuts, vector<int>& verticalCuts) {
horizontalCuts.push_back(0);
horizontalCuts.push_back(h);
verticalCuts.push_back(0);
verticalCuts.push_back(w);
sort(horizontalCuts.begin(), horizontalCuts.end());
sort(verticalCuts.begin(), verticalCuts.end());
int x = 0, y = 0;
for (int i = 1; i < horizontalCuts.size(); ++i) {
x = max(x, horizontalCuts[i] - horizontalCuts[i - 1]);
}
for (int i = 1; i < verticalCuts.size(); ++i) {
y = max(y, verticalCuts[i] - verticalCuts[i - 1]);
}
int mod = 1e9 + 7;
return (int) ((1ll * x * y) % mod);
}
};
func maxArea(h int, w int, horizontalCuts []int, verticalCuts []int) int {
horizontalCuts = append(horizontalCuts, []int{0, h}...)
verticalCuts = append(verticalCuts, []int{0, w}...)
sort.Ints(horizontalCuts)
sort.Ints(verticalCuts)
x, y := 0, 0
mod := int(1e9) + 7
for i := 1; i < len(horizontalCuts); i++ {
x = max(x, horizontalCuts[i]-horizontalCuts[i-1])
}
for i := 1; i < len(verticalCuts); i++ {
y = max(y, verticalCuts[i]-verticalCuts[i-1])
}
return (x * y) % mod
}
func max(a, b int) int {
if a > b {
return a
}
return b
}