Skip to content

Latest commit

 

History

History
249 lines (194 loc) · 7 KB

File metadata and controls

249 lines (194 loc) · 7 KB

English Version

题目描述

给你一棵树,树上有 n 个节点,按从 0n-1 编号。树以父节点数组的形式给出,其中 parent[i] 是节点 i 的父节点。树的根节点是编号为 0 的节点。

树节点的第 k 个祖先节点是从该节点到根节点路径上的第 k 个节点。

实现 TreeAncestor 类:

  • TreeAncestor(int n, int[] parent) 对树和父数组中的节点数初始化对象。
  • getKthAncestor(int node, int k) 返回节点 node 的第 k 个祖先节点。如果不存在这样的祖先节点,返回 -1 。

 

示例 1:

输入:
["TreeAncestor","getKthAncestor","getKthAncestor","getKthAncestor"]
[[7,[-1,0,0,1,1,2,2]],[3,1],[5,2],[6,3]]

输出:
[null,1,0,-1]

解释:
TreeAncestor treeAncestor = new TreeAncestor(7, [-1, 0, 0, 1, 1, 2, 2]);

treeAncestor.getKthAncestor(3, 1);  // 返回 1 ,它是 3 的父节点
treeAncestor.getKthAncestor(5, 2);  // 返回 0 ,它是 5 的祖父节点
treeAncestor.getKthAncestor(6, 3);  // 返回 -1 因为不存在满足要求的祖先节点

 

提示:

  • 1 <= k <= n <= 5 * 104
  • parent[0] == -1 表示编号为 0 的节点是根节点。
  • 对于所有的 0 < i < n0 <= parent[i] < n 总成立
  • 0 <= node < n
  • 至多查询 5 * 104

解法

方法一:动态规划 + 倍增

题目要我们寻找节点 node 的第 $k$ 个祖先节点,如果暴力求解,需要从 node 开始向上遍历 $k$ 次,时间复杂度为 $O(k)$,显然会超时。

我们可以使用动态规划的思想,结合倍增的思想来处理。

我们定义 $p[i][j]$ 表示节点 $i$ 的第 $2^j$ 个祖先节点,即 $p[i][j]$ 表示节点 $i$ 向上走 $2^j$ 步的节点。那么我们可以得到状态转移方程:

$$ p[i][j] = p[p[i][j-1]][j-1] $$

即:要想找到节点 $i$ 的第 $2^j$ 个祖先节点,我们可以先找到节点 $i$ 的第 $2^{j-1}$ 个祖先节点,然后再找到该节点的第 $2^{j-1}$ 个祖先节点即可。所以,我们要找到每个节点的距离为 $2^j$ 的祖先节点,直到达到树的最大高度。

之后对于每次查询,我们可以把 $k$ 拆成二进制的表示形式,然后根据二进制中 $1$ 的位置,累计向上查询,最终得到节点 $node$ 的第 $k$ 个祖先节点。

时间复杂度:初始化为 $O(n \times \log n)$,查询为 $O(\log n)$。空间复杂度:$O(n \times \log n)$。其中 $n$ 为树的节点数。

Python3

class TreeAncestor:

    def __init__(self, n: int, parent: List[int]):
        self.p = [[-1] * 18 for _ in range(n)]
        for i, fa in enumerate(parent):
            self.p[i][0] = fa
        for i in range(n):
            for j in range(1, 18):
                if self.p[i][j - 1] == -1:
                    continue
                self.p[i][j] = self.p[self.p[i][j - 1]][j - 1]

    def getKthAncestor(self, node: int, k: int) -> int:
        for i in range(17, -1, -1):
            if k >> i & 1:
                node = self.p[node][i]
                if node == -1:
                    break
        return node


# Your TreeAncestor object will be instantiated and called as such:
# obj = TreeAncestor(n, parent)
# param_1 = obj.getKthAncestor(node,k)

Java

class TreeAncestor {
    private int[][] p;

    public TreeAncestor(int n, int[] parent) {
        p = new int[n][18];
        for (var e : p) {
            Arrays.fill(e, -1);
        }
        for (int i = 0; i < n; ++i) {
            p[i][0] = parent[i];
        }
        for (int i = 0; i < n; ++i) {
            for (int j = 1; j < 18; ++j) {
                if (p[i][j - 1] == -1) {
                    continue;
                }
                p[i][j] = p[p[i][j - 1]][j - 1];
            }
        }
    }

    public int getKthAncestor(int node, int k) {
        for (int i = 17; i >= 0; --i) {
            if (((k >> i) & 1) == 1) {
                node = p[node][i];
                if (node == -1) {
                    break;
                }
            }
        }
        return node;
    }
}

/**
 * Your TreeAncestor object will be instantiated and called as such:
 * TreeAncestor obj = new TreeAncestor(n, parent);
 * int param_1 = obj.getKthAncestor(node,k);
 */

C++

class TreeAncestor {
public:
    TreeAncestor(int n, vector<int>& parent) {
        p = vector<vector<int>>(n, vector<int>(18, -1));
        for (int i = 0; i < n; ++i) {
            p[i][0] = parent[i];
        }
        for (int i = 0; i < n; ++i) {
            for (int j = 1; j < 18; ++j) {
                if (p[i][j - 1] == -1) {
                    continue;
                }
                p[i][j] = p[p[i][j - 1]][j - 1];
            }
        }
    }

    int getKthAncestor(int node, int k) {
        for (int i = 17; ~i; --i) {
            if (k >> i & 1) {
                node = p[node][i];
                if (node == -1) {
                    break;
                }
            }
        }
        return node;
    }

private:
    vector<vector<int>> p;
};

/**
 * Your TreeAncestor object will be instantiated and called as such:
 * TreeAncestor* obj = new TreeAncestor(n, parent);
 * int param_1 = obj->getKthAncestor(node,k);
 */

Go

type TreeAncestor struct {
	p [][18]int
}

func Constructor(n int, parent []int) TreeAncestor {
	p := make([][18]int, n)
	for i, fa := range parent {
		p[i][0] = fa
		for j := 1; j < 18; j++ {
			p[i][j] = -1
		}
	}
	for i := range p {
		for j := 1; j < 18; j++ {
			if p[i][j-1] == -1 {
				continue
			}
			p[i][j] = p[p[i][j-1]][j-1]
		}
	}
	return TreeAncestor{p}
}

func (this *TreeAncestor) GetKthAncestor(node int, k int) int {
	for i := 17; i >= 0; i-- {
		if k>>i&1 == 1 {
			node = this.p[node][i]
			if node == -1 {
				break
			}
		}
	}
	return node
}

/**
 * Your TreeAncestor object will be instantiated and called as such:
 * obj := Constructor(n, parent);
 * param_1 := obj.GetKthAncestor(node,k);
 */

...