Skip to content

Latest commit

 

History

History
145 lines (111 loc) · 3.37 KB

File metadata and controls

145 lines (111 loc) · 3.37 KB

English Version

题目描述

给你一个 严格升序排列 的正整数数组 arr 和一个整数 k 。

请你找到这个数组里第 k 个缺失的正整数。

 

示例 1:

输入:arr = [2,3,4,7,11], k = 5
输出:9
解释:缺失的正整数包括 [1,5,6,8,9,10,12,13,...] 。第 5 个缺失的正整数为 9 。

示例 2:

输入:arr = [1,2,3,4], k = 2
输出:6
解释:缺失的正整数包括 [5,6,7,...] 。第 2 个缺失的正整数为 6 。

 

提示:

  • 1 <= arr.length <= 1000
  • 1 <= arr[i] <= 1000
  • 1 <= k <= 1000
  • 对于所有 1 <= i < j <= arr.length 的 i 和 j 满足 arr[i] < arr[j] 

 

进阶:

你可以设计一个时间复杂度小于 O(n) 的算法解决此问题吗?

解法

方法一:二分查找

Python3

class Solution:
    def findKthPositive(self, arr: List[int], k: int) -> int:
        if arr[0] > k:
            return k
        left, right = 0, len(arr)
        while left < right:
            mid = (left + right) >> 1
            if arr[mid] - mid - 1 >= k:
                right = mid
            else:
                left = mid + 1
        return arr[left - 1] + k - (arr[left - 1] - (left - 1) - 1)

Java

class Solution {
    public int findKthPositive(int[] arr, int k) {
        if (arr[0] > k) {
            return k;
        }
        int left = 0, right = arr.length;
        while (left < right) {
            int mid = (left + right) >> 1;
            if (arr[mid] - mid - 1 >= k) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return arr[left - 1] + k - (arr[left - 1] - (left - 1) - 1);
    }
}

C++

class Solution {
public:
    int findKthPositive(vector<int>& arr, int k) {
        if (arr[0] > k) return k;
        int left = 0, right = arr.size();
        while (left < right) {
            int mid = (left + right) >> 1;
            if (arr[mid] - mid - 1 >= k)
                right = mid;
            else
                left = mid + 1;
        }
        return arr[left - 1] + k - (arr[left - 1] - (left - 1) - 1);
    }
};

Go

func findKthPositive(arr []int, k int) int {
	if arr[0] > k {
		return k
	}
	left, right := 0, len(arr)
	for left < right {
		mid := (left + right) >> 1
		if arr[mid]-mid-1 >= k {
			right = mid
		} else {
			left = mid + 1
		}
	}
	return arr[left-1] + k - (arr[left-1] - (left - 1) - 1)
}

...