Given an array of positive integers nums
, remove the smallest subarray (possibly empty) such that the sum of the remaining elements is divisible by p
. It is not allowed to remove the whole array.
Return the length of the smallest subarray that you need to remove, or -1
if it's impossible.
A subarray is defined as a contiguous block of elements in the array.
Example 1:
Input: nums = [3,1,4,2], p = 6 Output: 1 Explanation: The sum of the elements in nums is 10, which is not divisible by 6. We can remove the subarray [4], and the sum of the remaining elements is 6, which is divisible by 6.
Example 2:
Input: nums = [6,3,5,2], p = 9 Output: 2 Explanation: We cannot remove a single element to get a sum divisible by 9. The best way is to remove the subarray [5,2], leaving us with [6,3] with sum 9.
Example 3:
Input: nums = [1,2,3], p = 3 Output: 0 Explanation: Here the sum is 6. which is already divisible by 3. Thus we do not need to remove anything.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
1 <= p <= 109
class Solution:
def minSubarray(self, nums: List[int], p: int) -> int:
k = sum(nums) % p
if k == 0:
return 0
last = {0: -1}
cur = 0
ans = len(nums)
for i, x in enumerate(nums):
cur = (cur + x) % p
target = (cur - k + p) % p
if target in last:
ans = min(ans, i - last[target])
last[cur] = i
return -1 if ans == len(nums) else ans
class Solution {
public int minSubarray(int[] nums, int p) {
int k = 0;
for (int x : nums) {
k = (k + x) % p;
}
if (k == 0) {
return 0;
}
Map<Integer, Integer> last = new HashMap<>();
last.put(0, -1);
int n = nums.length;
int ans = n;
int cur = 0;
for (int i = 0; i < n; ++i) {
cur = (cur + nums[i]) % p;
int target = (cur - k + p) % p;
if (last.containsKey(target)) {
ans = Math.min(ans, i - last.get(target));
}
last.put(cur, i);
}
return ans == n ? -1 : ans;
}
}
class Solution {
public:
int minSubarray(vector<int>& nums, int p) {
int k = 0;
for (int& x : nums) {
k = (k + x) % p;
}
if (k == 0) {
return 0;
}
unordered_map<int, int> last;
last[0] = -1;
int n = nums.size();
int ans = n;
int cur = 0;
for (int i = 0; i < n; ++i) {
cur = (cur + nums[i]) % p;
int target = (cur - k + p) % p;
if (last.count(target)) {
ans = min(ans, i - last[target]);
}
last[cur] = i;
}
return ans == n ? -1 : ans;
}
};
func minSubarray(nums []int, p int) int {
k := 0
for _, x := range nums {
k = (k + x) % p
}
if k == 0 {
return 0
}
last := map[int]int{0: -1}
n := len(nums)
ans := n
cur := 0
for i, x := range nums {
cur = (cur + x) % p
target := (cur - k + p) % p
if j, ok := last[target]; ok {
ans = min(ans, i-j)
}
last[cur] = i
}
if ans == n {
return -1
}
return ans
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
function minSubarray(nums: number[], p: number): number {
let k = 0;
for (const x of nums) {
k = (k + x) % p;
}
if (k === 0) {
return 0;
}
const last = new Map<number, number>();
last.set(0, -1);
const n = nums.length;
let ans = n;
let cur = 0;
for (let i = 0; i < n; ++i) {
cur = (cur + nums[i]) % p;
const target = (cur - k + p) % p;
if (last.has(target)) {
const j = last.get(target)!;
ans = Math.min(ans, i - j);
}
last.set(cur, i);
}
if (ans == n) {
return -1;
}
return ans;
}