给你一个整数数组 nums
(下标 从 0 开始 计数)以及两个整数:low
和 high
,请返回 漂亮数对 的数目。
漂亮数对 是一个形如 (i, j)
的数对,其中 0 <= i < j < nums.length
且 low <= (nums[i] XOR nums[j]) <= high
。
示例 1:
输入:nums = [1,4,2,7], low = 2, high = 6 输出:6 解释:所有漂亮数对 (i, j) 列出如下: - (0, 1): nums[0] XOR nums[1] = 5 - (0, 2): nums[0] XOR nums[2] = 3 - (0, 3): nums[0] XOR nums[3] = 6 - (1, 2): nums[1] XOR nums[2] = 6 - (1, 3): nums[1] XOR nums[3] = 3 - (2, 3): nums[2] XOR nums[3] = 5
示例 2:
输入:nums = [9,8,4,2,1], low = 5, high = 14 输出:8 解释:所有漂亮数对 (i, j) 列出如下: - (0, 2): nums[0] XOR nums[2] = 13 - (0, 3): nums[0] XOR nums[3] = 11 - (0, 4): nums[0] XOR nums[4] = 8 - (1, 2): nums[1] XOR nums[2] = 12 - (1, 3): nums[1] XOR nums[3] = 10 - (1, 4): nums[1] XOR nums[4] = 9 - (2, 3): nums[2] XOR nums[3] = 6 - (2, 4): nums[2] XOR nums[4] = 5
提示:
1 <= nums.length <= 2 * 104
1 <= nums[i] <= 2 * 104
1 <= low <= high <= 2 * 104
方法一:0-1 字典树
对于这种区间
在这道题中,我们可以统计有多少数对的异或值小于
另外,对于数组异或计数问题,我们通常可以使用“0-1 字典树”来解决。
字典树的节点定义如下:
children[0]
和children[1]
分别表示当前节点的左右子节点;cnt
表示以当前节点为结尾的数的数量。
在字典树中,我们还定义了以下两个函数:
其中一个函数是
另一个函数是 node
开始,遍历 node = node.children[v ^ 1]
。继续遍历下一位。如果当前 node = node.children[v]
。继续遍历下一位。遍历完
有了以上两个函数,我们就可以解决本题了。
我们遍历数组 nums
,对于每个数 nums
。最后返回答案即可。
时间复杂度 nums
的长度,而 nums
中的最大值。本题中我们直接取
class Trie:
def __init__(self):
self.children = [None] * 2
self.cnt = 0
def insert(self, x):
node = self
for i in range(15, -1, -1):
v = x >> i & 1
if node.children[v] is None:
node.children[v] = Trie()
node = node.children[v]
node.cnt += 1
def search(self, x, limit):
node = self
ans = 0
for i in range(15, -1, -1):
if node is None:
return ans
v = x >> i & 1
if limit >> i & 1:
if node.children[v]:
ans += node.children[v].cnt
node = node.children[v ^ 1]
else:
node = node.children[v]
return ans
class Solution:
def countPairs(self, nums: List[int], low: int, high: int) -> int:
ans = 0
tree = Trie()
for x in nums:
ans += tree.search(x, high + 1) - tree.search(x, low)
tree.insert(x)
return ans
class Trie {
private Trie[] children = new Trie[2];
private int cnt;
public void insert(int x) {
Trie node = this;
for (int i = 15; i >= 0; --i) {
int v = (x >> i) & 1;
if (node.children[v] == null) {
node.children[v] = new Trie();
}
node = node.children[v];
++node.cnt;
}
}
public int search(int x, int limit) {
Trie node = this;
int ans = 0;
for (int i = 15; i >= 0 && node != null; --i) {
int v = (x >> i) & 1;
if (((limit >> i) & 1) == 1) {
if (node.children[v] != null) {
ans += node.children[v].cnt;
}
node = node.children[v ^ 1];
} else {
node = node.children[v];
}
}
return ans;
}
}
class Solution {
public int countPairs(int[] nums, int low, int high) {
Trie trie = new Trie();
int ans = 0;
for (int x : nums) {
ans += trie.search(x, high + 1) - trie.search(x, low);
trie.insert(x);
}
return ans;
}
}
class Trie {
public:
Trie(): children(2), cnt(0) {}
void insert(int x) {
Trie* node = this;
for (int i = 15; ~i; --i) {
int v = x >> i & 1;
if (!node->children[v]) {
node->children[v] = new Trie();
}
node = node->children[v];
++node->cnt;
}
}
int search(int x, int limit) {
Trie* node = this;
int ans = 0;
for (int i = 15; ~i && node; --i) {
int v = x >> i & 1;
if (limit >> i & 1) {
if (node->children[v]) {
ans += node->children[v]->cnt;
}
node = node->children[v ^ 1];
} else {
node = node->children[v];
}
}
return ans;
}
private:
vector<Trie*> children;
int cnt;
};
class Solution {
public:
int countPairs(vector<int>& nums, int low, int high) {
Trie* tree = new Trie();
int ans = 0;
for (int& x : nums) {
ans += tree->search(x, high + 1) - tree->search(x, low);
tree->insert(x);
}
return ans;
}
};
type Trie struct {
children [2]*Trie
cnt int
}
func newTrie() *Trie {
return &Trie{}
}
func (this *Trie) insert(x int) {
node := this
for i := 15; i >= 0; i-- {
v := (x >> i) & 1
if node.children[v] == nil {
node.children[v] = newTrie()
}
node = node.children[v]
node.cnt++
}
}
func (this *Trie) search(x, limit int) (ans int) {
node := this
for i := 15; i >= 0 && node != nil; i-- {
v := (x >> i) & 1
if (limit >> i & 1) == 1 {
if node.children[v] != nil {
ans += node.children[v].cnt
}
node = node.children[v^1]
} else {
node = node.children[v]
}
}
return
}
func countPairs(nums []int, low int, high int) (ans int) {
tree := newTrie()
for _, x := range nums {
ans += tree.search(x, high+1) - tree.search(x, low)
tree.insert(x)
}
return
}