Skip to content

Latest commit

 

History

History
517 lines (456 loc) · 13.5 KB

File metadata and controls

517 lines (456 loc) · 13.5 KB

English Version

题目描述

给你一棵二叉树的根节点 root ,二叉树中节点的值 互不相同 。另给你一个整数 start 。在第 0 分钟,感染 将会从值为 start 的节点开始爆发。

每分钟,如果节点满足以下全部条件,就会被感染:

  • 节点此前还没有感染。
  • 节点与一个已感染节点相邻。

返回感染整棵树需要的分钟数

 

示例 1:

输入:root = [1,5,3,null,4,10,6,9,2], start = 3
输出:4
解释:节点按以下过程被感染:
- 第 0 分钟:节点 3
- 第 1 分钟:节点 1、10、6
- 第 2 分钟:节点5
- 第 3 分钟:节点 4
- 第 4 分钟:节点 9 和 2
感染整棵树需要 4 分钟,所以返回 4 。

示例 2:

输入:root = [1], start = 1
输出:0
解释:第 0 分钟,树中唯一一个节点处于感染状态,返回 0 。

 

提示:

  • 树中节点的数目在范围 [1, 105]
  • 1 <= Node.val <= 105
  • 每个节点的值 互不相同
  • 树中必定存在值为 start 的节点

解法

方法一:DFS + BFS

先通过 $DFS$ 建图,得到 $g$。然后以 $start$ 作为起点,哈希表 $vis$ 标记访问过的节点,通过 $BFS$ 以及前面得到的图 $g$,逐层往外扩展,扩展的次数即为答案。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点个数。

方法二:两次 DFS

与方法一一样,我们先通过 $DFS$ 建图,得到 $g$。然后以 $start$ 作为起点,通过 $DFS$ 搜索整棵树,找到最远距离,即为答案。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点个数。

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def amountOfTime(self, root: Optional[TreeNode], start: int) -> int:
        def dfs(root):
            if root is None:
                return
            if root.left:
                g[root.val].append(root.left.val)
                g[root.left.val].append(root.val)
            if root.right:
                g[root.val].append(root.right.val)
                g[root.right.val].append(root.val)
            dfs(root.left)
            dfs(root.right)

        g = defaultdict(list)
        dfs(root)
        vis = set()
        q = deque([start])
        ans = -1
        while q:
            ans += 1
            for _ in range(len(q)):
                i = q.popleft()
                vis.add(i)
                for j in g[i]:
                    if j not in vis:
                        q.append(j)
        return ans
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def amountOfTime(self, root: Optional[TreeNode], start: int) -> int:
        def dfs(root):
            if root is None:
                return
            if root.left:
                g[root.val].append(root.left.val)
                g[root.left.val].append(root.val)
            if root.right:
                g[root.val].append(root.right.val)
                g[root.right.val].append(root.val)
            dfs(root.left)
            dfs(root.right)

        def dfs2(i, fa):
            ans = 0
            for j in g[i]:
                if j != fa:
                    ans = max(ans, 1 + dfs2(j, i))
            return ans

        g = defaultdict(list)
        dfs(root)
        return dfs2(start, -1)

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private Map<Integer, List<Integer>> g = new HashMap<>();

    public int amountOfTime(TreeNode root, int start) {
        dfs(root);
        Deque<Integer> q = new ArrayDeque<>();
        Set<Integer> vis = new HashSet<>();
        q.offer(start);
        int ans = -1;
        while (!q.isEmpty()) {
            ++ans;
            for (int n = q.size(); n > 0; --n) {
                int i = q.pollFirst();
                vis.add(i);
                if (g.containsKey(i)) {
                    for (int j : g.get(i)) {
                        if (!vis.contains(j)) {
                            q.offer(j);
                        }
                    }
                }
            }
        }
        return ans;
    }

    private void dfs(TreeNode root) {
        if (root == null) {
            return;
        }
        if (root.left != null) {
            g.computeIfAbsent(root.val, k -> new ArrayList<>()).add(root.left.val);
            g.computeIfAbsent(root.left.val, k -> new ArrayList<>()).add(root.val);
        }
        if (root.right != null) {
            g.computeIfAbsent(root.val, k -> new ArrayList<>()).add(root.right.val);
            g.computeIfAbsent(root.right.val, k -> new ArrayList<>()).add(root.val);
        }
        dfs(root.left);
        dfs(root.right);
    }
}
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private Map<Integer, List<Integer>> g = new HashMap<>();

    public int amountOfTime(TreeNode root, int start) {
        dfs(root);
        return dfs(start, -1);
    }

    private int dfs(int i, int fa) {
        int ans = 0;
        for (int j : g.getOrDefault(i, Collections.emptyList())) {
            if (j != fa) {
                ans = Math.max(ans, 1 + dfs(j, i));
            }
        }
        return ans;
    }

    private void dfs(TreeNode root) {
        if (root == null) {
            return;
        }
        if (root.left != null) {
            g.computeIfAbsent(root.left.val, k -> new ArrayList<>()).add(root.val);
            g.computeIfAbsent(root.val, k -> new ArrayList<>()).add(root.left.val);
        }
        if (root.right != null) {
            g.computeIfAbsent(root.right.val, k -> new ArrayList<>()).add(root.val);
            g.computeIfAbsent(root.val, k -> new ArrayList<>()).add(root.right.val);
        }
        dfs(root.left);
        dfs(root.right);
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    unordered_map<int, vector<int>> g;

    int amountOfTime(TreeNode* root, int start) {
        dfs(root);
        queue<int> q {{start}};
        unordered_set<int> vis;
        int ans = -1;
        while (q.size()) {
            ++ans;
            for (int n = q.size(); n; --n) {
                int i = q.front();
                q.pop();
                vis.insert(i);
                for (int j : g[i]) {
                    if (!vis.count(j)) {
                        q.push(j);
                    }
                }
            }
        }
        return ans;
    }

    void dfs(TreeNode* root) {
        if (!root) return;
        if (root->left) {
            g[root->val].push_back(root->left->val);
            g[root->left->val].push_back(root->val);
        }
        if (root->right) {
            g[root->val].push_back(root->right->val);
            g[root->right->val].push_back(root->val);
        }
        dfs(root->left);
        dfs(root->right);
    }
};
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    unordered_map<int, vector<int>> g;

    int amountOfTime(TreeNode* root, int start) {
        dfs(root);
        return dfs(start, -1);
    }

    int dfs(int i, int fa) {
        int ans = 0;
        for (int& j : g[i]) {
            if (j != fa) {
                ans = max(ans, 1 + dfs(j, i));
            }
        }
        return ans;
    }

    void dfs(TreeNode* root) {
        if (!root) return;
        if (root->left) {
            g[root->val].push_back(root->left->val);
            g[root->left->val].push_back(root->val);
        }
        if (root->right) {
            g[root->val].push_back(root->right->val);
            g[root->right->val].push_back(root->val);
        }
        dfs(root->left);
        dfs(root->right);
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func amountOfTime(root *TreeNode, start int) int {
	g := map[int][]int{}
	var dfs func(*TreeNode)
	dfs = func(root *TreeNode) {
		if root == nil {
			return
		}
		if root.Left != nil {
			g[root.Val] = append(g[root.Val], root.Left.Val)
			g[root.Left.Val] = append(g[root.Left.Val], root.Val)
		}
		if root.Right != nil {
			g[root.Val] = append(g[root.Val], root.Right.Val)
			g[root.Right.Val] = append(g[root.Right.Val], root.Val)
		}
		dfs(root.Left)
		dfs(root.Right)
	}

	dfs(root)
	q := []int{start}
	ans := -1
	vis := map[int]bool{}
	for len(q) > 0 {
		ans++
		for n := len(q); n > 0; n-- {
			i := q[0]
			q = q[1:]
			vis[i] = true
			for _, j := range g[i] {
				if !vis[j] {
					q = append(q, j)
				}
			}
		}
	}
	return ans
}
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func amountOfTime(root *TreeNode, start int) int {
	g := map[int][]int{}
	var dfs func(*TreeNode)
	dfs = func(root *TreeNode) {
		if root == nil {
			return
		}
		if root.Left != nil {
			g[root.Val] = append(g[root.Val], root.Left.Val)
			g[root.Left.Val] = append(g[root.Left.Val], root.Val)
		}
		if root.Right != nil {
			g[root.Val] = append(g[root.Val], root.Right.Val)
			g[root.Right.Val] = append(g[root.Right.Val], root.Val)
		}
		dfs(root.Left)
		dfs(root.Right)
	}

	var dfs2 func(int, int) int
	dfs2 = func(i, fa int) int {
		ans := 0
		for _, j := range g[i] {
			if j != fa {
				ans = max(ans, 1+dfs2(j, i))
			}
		}
		return ans
	}

	dfs(root)
	return dfs2(start, -1)
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

TypeScript

/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function amountOfTime(root: TreeNode | null, start: number): number {
    const map = new Map<number, number[]>();
    const create = ({ val, left, right }: TreeNode) => {
        if (left != null) {
            map.set(val, [...(map.get(val) ?? []), left.val]);
            map.set(left.val, [...(map.get(left.val) ?? []), val]);
            create(left);
        }
        if (right != null) {
            map.set(val, [...(map.get(val) ?? []), right.val]);
            map.set(right.val, [...(map.get(right.val) ?? []), val]);
            create(right);
        }
    };
    create(root);
    const dfs = (st: number, fa: number) => {
        let res = 0;
        for (const v of map.get(st) ?? []) {
            if (v !== fa) {
                res = Math.max(res, dfs(v, st) + 1);
            }
        }
        return res;
    };
    return dfs(start, -1);
}

...