给你一个无穷大的网格图。一开始你在 (1, 1)
,你需要通过有限步移动到达点 (targetX, targetY)
。
每一步 ,你可以从点 (x, y)
移动到以下点之一:
(x, y - x)
(x - y, y)
(2 * x, y)
(x, 2 * y)
给你两个整数 targetX
和 targetY
,分别表示你最后需要到达点的 X 和 Y 坐标。如果你可以从 (1, 1)
出发到达这个点,请你返回true
,否则返回 false
。
示例 1:
输入:targetX = 6, targetY = 9 输出:false 解释:没法从 (1,1) 出发到达 (6,9) ,所以返回 false 。
示例 2:
输入:targetX = 4, targetY = 7 输出:true 解释:你可以按照以下路径到达:(1,1) -> (1,2) -> (1,4) -> (1,8) -> (1,7) -> (2,7) -> (4,7) 。
提示:
1 <= targetX, targetY <= 109
方法一:数学
我们注意到,前两种移动方式不会改变横、纵坐标的最大公约数,而后两种移动方式可以使得横、纵坐标的最大公约数乘上
接下来,我们证明,任意满足
我们将移动方式反转一下,即从终点往回走,那么
只要
时间复杂度
class Solution:
def isReachable(self, targetX: int, targetY: int) -> bool:
x = gcd(targetX, targetY)
return x & (x - 1) == 0
class Solution {
public boolean isReachable(int targetX, int targetY) {
int x = gcd(targetX, targetY);
return (x & (x - 1)) == 0;
}
private int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
}
class Solution {
public:
bool isReachable(int targetX, int targetY) {
int x = gcd(targetX, targetY);
return (x & (x - 1)) == 0;
}
};
func isReachable(targetX int, targetY int) bool {
x := gcd(targetX, targetY)
return x&(x-1) == 0
}
func gcd(a, b int) int {
if b == 0 {
return a
}
return gcd(b, a%b)
}
function isReachable(targetX: number, targetY: number): boolean {
const x = gcd(targetX, targetY);
return (x & (x - 1)) === 0;
}
function gcd(a: number, b: number): number {
return b == 0 ? a : gcd(b, a % b);
}