forked from NVIDIA/TensorRT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_coco.py
80 lines (72 loc) · 3.5 KB
/
eval_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import sys
import argparse
import numpy as np
from infer import TensorRTInfer
from image_batcher import ImageBatcher
def main(args):
automl_path = os.path.realpath(args.automl_path)
sys.path.insert(1, os.path.join(automl_path, "efficientdet"))
try:
import coco_metric
except ImportError:
print("Could not import the 'coco_metric' module from AutoML. Searching in: {}".format(automl_path))
print("Please clone the repository https://github.com/google/automl and provide its path with --automl_path.")
sys.exit(1)
trt_infer = TensorRTInfer(args.engine)
batcher = ImageBatcher(args.input, *trt_infer.input_spec())
evaluator = coco_metric.EvaluationMetric(filename=args.annotations)
for batch, images, scales in batcher.get_batch():
print("Processing Image {} / {}".format(batcher.image_index, batcher.num_images), end="\r")
detections = trt_infer.process(batch, scales, args.nms_threshold)
coco_det = np.zeros((len(images), max([len(d) for d in detections]), 7))
coco_det[:, :, -1] = -1
for i in range(len(images)):
for n in range(len(detections[i])):
source_id = int(os.path.splitext(os.path.basename(images[i]))[0])
det = detections[i][n]
coco_det[i][n] = [
source_id,
det["xmin"],
det["ymin"],
det["xmax"] - det["xmin"],
det["ymax"] - det["ymin"],
det["score"],
det["class"] + 1, # The COCO evaluator expects class 0 to be background, so offset by 1
]
evaluator.update_state(None, coco_det)
print()
evaluator.result(100)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--engine", help="The TensorRT engine to infer with")
parser.add_argument("-i", "--input",
help="The input to infer, either a single image path, or a directory of images")
parser.add_argument("-a", "--annotations", help="Set the path to the COCO 'instances_val2017.json' file")
parser.add_argument("-p", "--automl_path", default="./automl",
help="Set the path where to find the AutoML repository, from "
"https://github.com/google/automl. Default: ./automl")
parser.add_argument("-t", "--nms_threshold", type=float, help="Override the score threshold for the NMS operation, "
"if higher than the threshold in the engine.")
args = parser.parse_args()
if not all([args.engine, args.input, args.annotations]):
parser.print_help()
print("\nThese arguments are required: --engine --input and --annotations")
sys.exit(1)
main(args)