forked from NVIDIA/TensorRT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer.py
234 lines (214 loc) · 9.46 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import sys
import time
import ctypes
import argparse
import numpy as np
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
from image_batcher import ImageBatcher
from visualize import visualize_detections
class TensorRTInfer:
"""
Implements inference for the EfficientDet TensorRT engine.
"""
def __init__(self, engine_path):
"""
:param engine_path: The path to the serialized engine to load from disk.
"""
# Load TRT engine
self.logger = trt.Logger(trt.Logger.ERROR)
trt.init_libnvinfer_plugins(self.logger, namespace="")
with open(engine_path, "rb") as f, trt.Runtime(self.logger) as runtime:
self.engine = runtime.deserialize_cuda_engine(f.read())
self.context = self.engine.create_execution_context()
assert self.engine
assert self.context
# Setup I/O bindings
self.inputs = []
self.outputs = []
self.allocations = []
for i in range(self.engine.num_bindings):
is_input = False
if self.engine.binding_is_input(i):
is_input = True
name = self.engine.get_binding_name(i)
dtype = np.dtype(trt.nptype(self.engine.get_binding_dtype(i)))
shape = self.context.get_binding_shape(i)
if is_input and shape[0] < 0:
assert self.engine.num_optimization_profiles > 0
profile_shape = self.engine.get_profile_shape(0, name)
assert len(profile_shape) == 3 # min,opt,max
# Set the *max* profile as binding shape
self.context.set_binding_shape(i, profile_shape[2])
shape = self.context.get_binding_shape(i)
if is_input:
self.batch_size = shape[0]
size = dtype.itemsize
for s in shape:
size *= s
allocation = cuda.mem_alloc(size)
host_allocation = None if is_input else np.zeros(shape, dtype)
binding = {
"index": i,
"name": name,
"dtype": dtype,
"shape": list(shape),
"allocation": allocation,
"host_allocation": host_allocation,
}
self.allocations.append(allocation)
if self.engine.binding_is_input(i):
self.inputs.append(binding)
else:
self.outputs.append(binding)
print("{} '{}' with shape {} and dtype {}".format(
"Input" if is_input else "Output",
binding['name'], binding['shape'], binding['dtype']))
assert self.batch_size > 0
assert len(self.inputs) > 0
assert len(self.outputs) > 0
assert len(self.allocations) > 0
def input_spec(self):
"""
Get the specs for the input tensor of the network. Useful to prepare memory allocations.
:return: Two items, the shape of the input tensor and its (numpy) datatype.
"""
return self.inputs[0]['shape'], self.inputs[0]['dtype']
def output_spec(self):
"""
Get the specs for the output tensors of the network. Useful to prepare memory allocations.
:return: A list with two items per element, the shape and (numpy) datatype of each output tensor.
"""
specs = []
for o in self.outputs:
specs.append((o['shape'], o['dtype']))
return specs
def infer(self, batch):
"""
Execute inference on a batch of images.
:param batch: A numpy array holding the image batch.
:return A list of outputs as numpy arrays.
"""
# Copy I/O and Execute
cuda.memcpy_htod(self.inputs[0]['allocation'], batch)
self.context.execute_v2(self.allocations)
for o in range(len(self.outputs)):
cuda.memcpy_dtoh(self.outputs[o]['host_allocation'], self.outputs[o]['allocation'])
return [o['host_allocation'] for o in self.outputs]
def process(self, batch, scales=None, nms_threshold=None):
"""
Execute inference on a batch of images. The images should already be batched and preprocessed, as prepared by
the ImageBatcher class. Memory copying to and from the GPU device will be performed here.
:param batch: A numpy array holding the image batch.
:param scales: The image resize scales for each image in this batch. Default: No scale postprocessing applied.
:return: A nested list for each image in the batch and each detection in the list.
"""
# Run inference
outputs = self.infer(batch)
# Process the results
nums = outputs[0]
boxes = outputs[1]
scores = outputs[2]
classes = outputs[3]
detections = []
normalized = (np.max(boxes) < 2.0)
for i in range(self.batch_size):
detections.append([])
for n in range(int(nums[i])):
scale = self.inputs[0]['shape'][2] if normalized else 1.0
if scales and i < len(scales):
scale /= scales[i]
if nms_threshold and scores[i][n] < nms_threshold:
continue
detections[i].append(
{
"ymin": boxes[i][n][0] * scale,
"xmin": boxes[i][n][1] * scale,
"ymax": boxes[i][n][2] * scale,
"xmax": boxes[i][n][3] * scale,
"score": scores[i][n],
"class": int(classes[i][n]),
}
)
return detections
def main(args):
if args.output:
output_dir = os.path.realpath(args.output)
os.makedirs(output_dir, exist_ok=True)
labels = []
if args.labels:
with open(args.labels) as f:
for i, label in enumerate(f):
labels.append(label.strip())
trt_infer = TensorRTInfer(args.engine)
if args.input:
print("Inferring data in {}".format(args.input))
batcher = ImageBatcher(args.input, *trt_infer.input_spec())
for batch, images, scales in batcher.get_batch():
print("Processing Image {} / {}".format(batcher.image_index, batcher.num_images), end="\r")
detections = trt_infer.process(batch, scales, args.nms_threshold)
if args.output:
for i in range(len(images)):
basename = os.path.splitext(os.path.basename(images[i]))[0]
# Image Visualizations
output_path = os.path.join(output_dir, "{}.png".format(basename))
visualize_detections(images[i], output_path, detections[i], labels)
# Text Results
output_results = ""
for d in detections[i]:
line = [d['xmin'], d['ymin'], d['xmax'], d['ymax'], d['score'], d['class']]
output_results += "\t".join([str(f) for f in line]) + "\n"
with open(os.path.join(output_dir, "{}.txt".format(basename)), "w") as f:
f.write(output_results)
else:
print("No input provided, running in benchmark mode")
spec = trt_infer.input_spec()
batch = 255 * np.random.rand(*spec[0]).astype(spec[1])
iterations = 200
times = []
for i in range(20): # GPU warmup iterations
trt_infer.infer(batch)
for i in range(iterations):
start = time.time()
trt_infer.infer(batch)
times.append(time.time() - start)
print("Iteration {} / {}".format(i + 1, iterations), end="\r")
print("Benchmark results include time for H2D and D2H memory copies")
print("Average Latency: {:.3f} ms".format(
1000 * np.average(times)))
print("Average Throughput: {:.1f} ips".format(
trt_infer.batch_size / np.average(times)))
print()
print("Finished Processing")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--engine", default=None, required=True,
help="The serialized TensorRT engine")
parser.add_argument("-i", "--input", default=None,
help="Path to the image or directory to process")
parser.add_argument("-o", "--output", default=None,
help="Directory where to save the visualization results")
parser.add_argument("-l", "--labels", default="./labels_coco.txt",
help="File to use for reading the class labels from, default: ./labels_coco.txt")
parser.add_argument("-t", "--nms_threshold", type=float,
help="Override the score threshold for the NMS operation, if higher than the built-in threshold")
args = parser.parse_args()
main(args)