forked from NVIDIA/TensorRT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer_tf.py
158 lines (139 loc) · 5.8 KB
/
infer_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import sys
import time
import argparse
import numpy as np
import tensorflow as tf
class TensorFlowInfer:
"""
Implements TensorFlow inference of a saved model, following the same API as the TensorRTInfer class.
"""
def __init__(self, saved_model_path):
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
self.model = tf.saved_model.load(saved_model_path)
self.pred_fn = self.model.signatures['serving_default']
# Setup I/O bindings
self.batch_size = 1
self.inputs = []
fn_inputs = self.pred_fn.structured_input_signature[1]
for i, input in enumerate(list(fn_inputs.values())):
self.inputs.append({
'index': i,
'name': input.name,
'dtype': np.dtype(input.dtype.as_numpy_dtype()),
'shape': [1, 512, 512, 3], # This can be overridden later
})
self.outputs = []
fn_outputs = self.pred_fn.structured_outputs
for i, output in enumerate(list(fn_outputs.values())):
self.outputs.append({
'index': i,
'name': output.name,
'dtype': np.dtype(output.dtype.as_numpy_dtype()),
'shape': output.shape.as_list(),
})
def override_input_shape(self, input, shape):
self.inputs[input]['shape'] = shape
self.batch_size = shape[0]
def input_spec(self):
return self.inputs[0]['shape'], self.inputs[0]['dtype']
def output_spec(self):
return self.outputs[0]['shape'], self.outputs[0]['dtype']
def infer(self, batch):
# Process I/O and execute the network
input = {self.inputs[0]['name']: tf.convert_to_tensor(batch)}
output = self.pred_fn(**input)
return output
def process(self, batch, scales=None, nms_threshold=None):
# Infer network
output = self.infer(batch)
# Extract the results depending on what kind of saved model this is
boxes = None
scores = None
classes = None
if len(self.outputs) == 1:
# Detected as AutoML Saved Model
assert len(self.outputs[0]['shape']) == 3 and self.outputs[0]['shape'][2] == 7
results = output[self.outputs[0]['name']].numpy()
boxes = results[:, :, 1:5]
scores = results[:, :, 5]
classes = results[:, :, 6].astype(np.int32)
elif len(self.outputs) >= 4:
# Detected as TFOD Saved Model
assert output['num_detections']
num = int(output['num_detections'].numpy().flatten()[0])
boxes = output['detection_boxes'].numpy()[:, 0:num, :]
scores = output['detection_scores'].numpy()[:, 0:num]
classes = output['detection_classes'].numpy()[:, 0:num]
# Process the results
detections = [[]]
normalized = (np.max(boxes) < 2.0)
for n in range(scores.shape[1]):
if scores[0][n] == 0.0:
break
scale = self.inputs[0]['shape'][2] if normalized else 1.0
if scales:
scale /= scales[0]
if nms_threshold and scores[0][n] < nms_threshold:
continue
detections[0].append({
'ymin': boxes[0][n][0] * scale,
'xmin': boxes[0][n][1] * scale,
'ymax': boxes[0][n][2] * scale,
'xmax': boxes[0][n][3] * scale,
'score': scores[0][n],
'class': int(classes[0][n]) - 1,
})
return detections
def main(args):
print("Running in benchmark mode")
tf_infer = TensorFlowInfer(args.saved_model)
input_size = [int(v) for v in args.input_size.split(",")]
assert len(input_size) == 2
tf_infer.override_input_shape(0, [args.batch_size, input_size[0], input_size[1], 3])
spec = tf_infer.input_spec()
batch = 255 * np.random.rand(*spec[0]).astype(spec[1])
iterations = 200
times = []
for i in range(20): # Warmup iterations
tf_infer.infer(batch)
for i in range(iterations):
start = time.time()
tf_infer.infer(batch)
times.append(time.time() - start)
print("Iteration {} / {}".format(i + 1, iterations), end="\r")
print("Benchmark results include TensorFlow host overhead")
print("Average Latency: {:.3f} ms".format(
1000 * np.average(times)))
print("Average Throughput: {:.1f} ips".format(
tf_infer.batch_size / np.average(times)))
print()
print("Finished Processing")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--saved_model", required=True,
help="The TensorFlow saved model path to validate against")
parser.add_argument("-i", "--input_size", default="512,512",
help="The input size to run the model with, in HEIGHT,WIDTH format")
parser.add_argument("-b", "--batch_size", default=1, type=int,
help="The batch size to run the model with")
args = parser.parse_args()
main(args)