-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
78 lines (65 loc) · 2.84 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from __future__ import print_function
import argparse
import os
import torch
import torch.multiprocessing as mp
import my_optim
from envs import create_atari_env
from model import ActorCritic
from test import test
from train import train
# Based on
# https://github.com/pytorch/examples/tree/master/mnist_hogwild
# Training settings
parser = argparse.ArgumentParser(description='A3C')
parser.add_argument('--lr', type=float, default=0.0001,
help='learning rate (default: 0.0001)')
parser.add_argument('--gamma', type=float, default=0.99,
help='discount factor for rewards (default: 0.99)')
parser.add_argument('--tau', type=float, default=1.00,
help='parameter for GAE (default: 1.00)')
parser.add_argument('--entropy-coef', type=float, default=0.01,
help='entropy term coefficient (default: 0.01)')
parser.add_argument('--value-loss-coef', type=float, default=0.5,
help='value loss coefficient (default: 0.5)')
parser.add_argument('--max-grad-norm', type=float, default=50,
help='value loss coefficient (default: 50)')
parser.add_argument('--seed', type=int, default=1,
help='random seed (default: 1)')
parser.add_argument('--num-processes', type=int, default=16,
help='how many training processes to use (default: 4)')
parser.add_argument('--num-steps', type=int, default=20,
help='number of forward steps in A3C (default: 20)')
parser.add_argument('--max-episode-length', type=int, default=1000000,
help='maximum length of an episode (default: 1000000)')
parser.add_argument('--env-name', default='PongDeterministic-v4',
help='environment to train on (default: PongDeterministic-v4)')
parser.add_argument('--no-shared', default=False,
help='use an optimizer without shared momentum.')
if __name__ == '__main__':
mp.set_start_method("spawn")
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['CUDA_VISIBLE_DEVICES'] = ""
args = parser.parse_args()
torch.manual_seed(args.seed)
env = create_atari_env(args.env_name)
shared_model = ActorCritic(
env.observation_space.shape[0], env.action_space)
shared_model.share_memory()
if args.no_shared:
optimizer = None
else:
optimizer = my_optim.SharedAdam(shared_model.parameters(), lr=args.lr)
optimizer.share_memory()
processes = []
counter = mp.Value('i', 0)
lock = mp.Lock()
p = mp.Process(target=test, args=(args.num_processes, args, shared_model, counter))
p.start()
processes.append(p)
for rank in range(0, args.num_processes):
p = mp.Process(target=train, args=(rank, args, shared_model, counter, lock, optimizer))
p.start()
processes.append(p)
for p in processes:
p.join()