-
Notifications
You must be signed in to change notification settings - Fork 0
/
decoding_PR1_20210910.m
208 lines (168 loc) · 8.88 KB
/
decoding_PR1_20210910.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
%% Preperations
clear all;
root_path = '/home/svafaee/Codes/probabilityDecoding/predictingProbabilityFromBrainActivity/fMRI_analysis';
data_path = '/home/svafaee/Codes/fMRI/EmotionHorikawaCowenKeltner/11988351/data/fmri';
addpath(genpath('/home/svafaee/Codes/probabilityDecoding/Library/BrainDecoderToolbox2-master'));
addpath(genpath('/home/svafaee/Codes/probabilityDecoding/Library/cdtLRtool_v2_20181112'));
tag4version='PR1';
n_Subjects = 5;
lambda=[0.0005 0.001 0.005 0.01 0.05 0.1 0.5 1.0];
lambda2=[1];
[sample_h5_data, metadata] = load_data(fullfile(data_path, 'Subject1/preprocessed', 'fmri_Subject1_Session1.h5'));
ROIname{1}='V1';
ROIname{2}='V2';
ROIname{3}='V3';
ROIname{4}='V4';
ROIname{5}='LO';
ROIname{6}='FFC';
ROIname{7}='PHA';
ROIname{8}='HVC';
ROIname{9}='LVC';
ROIname{10}='VC';
ROIkeys=[];
for index_ROIname=1:7
temporal_str=[];
for index_key=1:length(metadata.key)
if ~isempty(strfind(metadata.key{index_key},ROIname{index_ROIname}))
if isempty(temporal_str)
temporal_str=[metadata.key{index_key} ' = 1 '];
else
temporal_str=[temporal_str '| ' metadata.key{index_key} ' = 1 '];
end
end
end
ROIkeys{index_ROIname}=temporal_str;
end
ROIkeys{8}=[ROIkeys{5} ' | ' ROIkeys{6} ' | ' ROIkeys{7}];
ROIkeys{9}=[ROIkeys{1} ' | ' ROIkeys{2} ' | ' ROIkeys{3}];
ROIkeys{10}=[ROIkeys{1} ' | ' ROIkeys{2} ' | ' ROIkeys{3} ' | ' ROIkeys{4} ' | ' ROIkeys{8}];
ROI_keys{1} = {'hcp180_L_V1', 'hcp180_R_V1', 'hcp180_L_VMV1', 'hcp180_R_VMV1'};
ROI_keys{2} = {'hcp180_L_V2', 'hcp180_R_V2', 'hcp180_L_VMV2', 'hcp180_R_VMV2'};
ROI_keys{3} = {'hcp180_L_V3A', 'hcp180_L_V3B', 'hcp180_L_V3', 'hcp180_L_VMV3', ...
'hcp180_L_V3CD', 'hcp180_R_V3A', 'hcp180_R_V3B', 'hcp180_R_V3', 'hcp180_R_VMV3', 'hcp180_R_V3CD'};
ROI_keys{4} = {'hcp180_L_V4', 'hcp180_L_V4t','hcp180_R_V4', 'hcp180_R_V4t'};
ROI_keys{5} = {'hcp180_L_LO1', 'hcp180_L_LO2','hcp180_L_LO3', 'hcp180_R_LO1', 'hcp180_R_LO2','hcp180_R_LO3'};
ROI_keys{6} = {'hcp180_L_FFC', 'hcp180_R_FFC'};
ROI_keys{7} = {'hcp180_L_PHA1', 'hcp180_L_PHA2','hcp180_L_PHA3', 'hcp180_R_PHA1', 'hcp180_R_PHA2','hcp180_R_PHA3'};
ROI_keys{8} = {'hcp180_L_LO1', 'hcp180_L_LO2','hcp180_L_LO3', 'hcp180_R_LO1', 'hcp180_R_LO2','hcp180_R_LO3',...
'hcp180_L_FFC', 'hcp180_R_FFC', ...
'hcp180_L_PHA1', 'hcp180_L_PHA2','hcp180_L_PHA3', 'hcp180_R_PHA1', 'hcp180_R_PHA2','hcp180_R_PHA3'};
ROI_keys{9} = {'hcp180_L_V1', 'hcp180_R_V1', 'hcp180_L_VMV1', 'hcp180_R_VMV1',...
'hcp180_L_V2', 'hcp180_R_V2', 'hcp180_L_VMV2', 'hcp180_R_VMV2', ...
'hcp180_L_V3A', 'hcp180_L_V3B', 'hcp180_L_V3', 'hcp180_L_VMV3', ...
'hcp180_L_V3CD', 'hcp180_R_V3A', 'hcp180_R_V3B', 'hcp180_R_V3', 'hcp180_R_VMV3', 'hcp180_R_V3CD'};
ROI_keys{10} = {'VC'}
%% Reading probability labels
labels_sh = load('/home/svafaee/Codes/fMRI/EmotionHorikawaCowenKeltner/11988351/data/feature/category.mat');
labels_sh = labels_sh.L.feat;
%% Reading brain data and start decoding
for i=1:n_Subjects
brain_data_roi = []
for j=1:length(ROIname)
subject_name = ['Subject' int2str(i)];
brain_data_tmp = [];
for k=1:length(ROI_keys{j})
roi_filename = [subject_name '_' ROI_keys{j}{k} '.mat'];
brain_data_tmp = load(fullfile(data_path, subject_name, 'rois', roi_filename));
brain_data_roi = [brain_data_roi brain_data_tmp.braindat];
% display(size(brain_data_tmp));
end
display(size(brain_data_roi));
%Retrieving todays date
todaysdate = '20211210';
todaysdirectory = ['./results_' todaysdate '/results_' tag4version];
if ~exist(todaysdirectory, 'dir')
mkdir(todaysdirectory)
end
filename2save=[todaysdirectory '/resultsDecodingAnalysis_' tag4version '_subject' subject_name '_ROI' ROIname{j} '.mat'];
display(filename2save)
results=[];
predictedLabel=[];
trueLabel=[];
%% Not checked from here!!!
if exist(filename2save)==2
%If the results file for this ROI is already created, skip this ROI
%and go to the next ROI.
display(['Subject ' subject_name 'ROI ' ROIname{index_ROIname} ' skipped.'])
else
%Save the empty file first.
save(filename2save,'results')
%Extract voxel values as a matrix.
%[feature indices]=select_feature(dataSet,metadata,ROIkeys{index_ROIname});
feature = brain_data_roi;
%Extract corresponsing labels (emotion scores).
%label=get_dataset(dataSet,metadata,'Label');
%label = get_dataset(dataSet_l, metadata_l, 'Label');
label = labels_sh;
%It seems that the first column is 1, second column is stimulus ID, 3-36th clumns are emotion scores.
%We use 3-36th columns as the variable to be predicted in the
%decoding analysis.
%label=label(:,3:36); %first appro
%{
%secodng approach, fixme
SecondColumn = label(:, 2);
feature = [SecondColumn feature];
display('size of feature');
display(size(feature));
label = [SecondColumn label];
display(size(label));
feature = sortrows(feature);
label = sortrows(label);
feature(:, 1) = [];
label(:, 1) = [];
label=label(:,3:36);
%}
%feature = feature(1:2185, :); %20210910
%label = label(1:2185, :); %20210910
duplicate_ids = [1,4:8,11,859,866,1673,2157,2187,2188,2194,2195];
feature(duplicate_ids, :) = [];
label(duplicate_ids, :) = [];
%Apply my function to recover count data
%(# of positive responses and # of the raters for each stimulus)
%from the emotion scores.
[k m]=recoverCountDataFromScores_v1(label);
cvIndex=make_cvindex(rem(1:size(feature,1),10)+1);
for index_emotion=1:size(label,2)
for index_lambda=1:length(lambda2)
for index_fold=1:length(cvIndex)
display(['Subject:' subject_name])
display(['ROI:' ROIname{j}])
display(['Emotion #:' num2str(index_emotion)])
display(['lambda:' num2str(lambda(index_lambda)) ' (' num2str(index_lambda) '/' num2str(length(lambda)) ')'])
display(['Fold #:' num2str(index_fold)])
tic
%Divide the fMRI and label data into training and test data.
feature4training=feature(cvIndex(index_fold).trainInds,:);
label4training=label(cvIndex(index_fold).trainInds,index_emotion);
feature4test=feature(cvIndex(index_fold).testInds,:);
label4test=label(cvIndex(index_fold).testInds,index_emotion);
%Also, divide the count label data into training and test data.
k4training=k(cvIndex(index_fold).trainInds,index_emotion);
k4test=k(cvIndex(index_fold).testInds,index_emotion);
m4training=m(cvIndex(index_fold).trainInds,1);
m4test=m(cvIndex(index_fold).testInds,1);
[feature4training mu SD]=zscore(feature4training,1,1);
feature4test=(feature4test-ones(size(feature4test,1),1)*mu)./(ones(size(feature4test,1),1)*SD);
%Model training. The model is cdtSPR with L2-regularization.
model=cdtPRtrain_v1_nestedCV(feature4training,k4training,m4training,lambda, 1.0);
display(['Best lambda by nested-CV:' num2str(model.FitInfo.Lambda)])
%Prediction
temporal_predictedLabel=cdtPRpredict_v1(feature4test,model);
temporal_trueLabel=label4test;
%Store the predicted and true values.
predictedLabel(cvIndex(index_fold).testInds,index_emotion,index_lambda)=...
temporal_predictedLabel;
trueLabel(cvIndex(index_fold).testInds,index_emotion,index_lambda)=...
temporal_trueLabel;
toc
end
%store and save the results
results.trueLabel=trueLabel;
results.predictedLabel=predictedLabel;
results.corr(index_emotion,index_lambda)=corr(trueLabel(:,index_emotion,index_lambda),predictedLabel(:,index_emotion,index_lambda));
save(filename2save,'results','lambda','-v7.3')
end
end
end
end
end