-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae_conv.py
73 lines (52 loc) · 2.14 KB
/
vae_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
from torch import nn
class VAEEncoder(nn.Module):
def __init__(self):
super(VAEEncoder, self).__init__()
self.latent_dim = 2
self.conv1 = nn.Conv2d(1, 32, 3, stride=2, padding=1)
self.conv2 = nn.Conv2d(32, 64, 3, stride=2, padding=1)
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(64*7*7, 16)
self.z_mean = nn.Linear(16, self.latent_dim)
self.z_log = nn.Linear(16, self.latent_dim)
self.relu = nn.ReLU()
def forward(self, input):
bs = input.shape[0]
x = self.relu(self.conv1(input))
x = self.relu(self.conv2(x))
x = self.flatten(x)
x = self.relu(self.fc1(x))
z_mean = self.z_mean(x)
z_log = self.z_log(x)
eps = torch.randn(bs, self.latent_dim, device=input.device)
z_val = z_mean + torch.exp(z_log / 2) * eps
return z_mean, z_log, z_val
class VAEDecoder(nn.Module):
def __init__(self):
super(VAEDecoder, self).__init__()
self.latent_dim = 2
self.fc1 = nn.Linear(self.latent_dim, 64*7*7)
#self.reshape = torch.reshape((7, 7, 64))
self.reshape = nn.Unflatten(1, (64, 7, 7))
self.conv1 = nn.ConvTranspose2d(64, 64, 3, stride=2)
self.conv2 = nn.ConvTranspose2d(64, 32, 3, stride=2, padding=1)
self.conv3 = nn.ConvTranspose2d(32, 1, 2, stride=1, padding=1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, input):
x = self.relu(self.fc1(input))
x = self.reshape(x)
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
decoded = self.sigmoid(self.conv3(x))
return decoded
class VAEAutoEncoder(nn.Module):
def __init__(self):
super(VAEAutoEncoder, self).__init__()
self.encoder = VAEEncoder()
self.decoder = VAEDecoder()
def forward(self, input):
z_mean, z_log, z_val = self.encoder(input)
decoded = self.decoder(z_val)
return decoded, z_mean, z_log, z_val