-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
154 lines (124 loc) · 4.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
import torchvision
import argparse
from nvidia.dali.plugin.pytorch import DALIClassificationIterator
from NvidiaDali import *
from model import PneumoniaDetection, pretrained_models
DESCRIPTION = """
Train the Corona Detection Model
"""
USAGE = """py runner.py --base_model base_model
Run Corona Detection Model on your machine.
For example, you can pass the following parameters:
python main.py --base_model Inception --optimizer Adam --learning_rate 0.00001 --batch_size 32 --epoch 25 --colab
This will run main.py with base model as Inception and given parameters
"""
parser = argparse.ArgumentParser(description=DESCRIPTION, usage=USAGE)
parser.add_argument(
"--base_model",
metavar="base_model",
type=str,
action="store",
help="Base Model to use. Available Options: ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, Alexnet, VGG11, VGG13, VGG16, VGG19, GoogleNet, Inception",
required=True,
)
parser.add_argument(
"--optimizer",
metavar="optimizer",
type=str,
action="store",
help="Optimizer to use in the training",
required=True,
)
parser.add_argument(
"--learning_rate",
metavar="learning_rate",
type=float,
action="store",
help="Learning Rate for training",
default=0.00001,
)
parser.add_argument(
"--batch_size",
metavar="batch_size",
type=int,
action="store",
help="Batch_size",
default=16,
)
parser.add_argument(
"--epoch", metavar="epoch", type=int, action="store", help="Epoch", default=15
)
parser.add_argument(
"--nvidiadali",
action="store_true",
help="Option to use when want to use nvidiadali...need to install it before running",
)
parser.add_argument(
"--colab",
action="store_true",
help="Option to use when using colab for training...Mount the drive and it will be saved in the drive",
)
optimizers = {
"Adam": torch.optim.Adam,
"SGD": torch.optim.SGD,
"RMSprop": torch.optim.RMSprop,
"Adagrad": torch.optim.Adagrad,
"Adadelta": torch.optim.Adadelta,
}
if __name__ == "__main__":
kwargs = vars(parser.parse_args())
print("Corona Detection Project")
if torch.cuda.is_available():
print("Using GPU")
device = torch.device("cuda")
else:
print("Using CPU")
device = torch.device("cpu")
print("Creating Model Object: ")
model = PneumoniaDetection(kwargs["base_model"], colab=kwargs["colab"])
train_data_path = "./data/Corona_Classification_data/train/"
test_data_path = "./data/Corona_Classification_data/test/"
batch_size = kwargs["batch_size"]
learning_rate = kwargs["learning_rate"]
if kwargs["nvidiadali"]:
pipe = HybridPipelineTrain(batch_size=batch_size, output_size = list(pretrained_models[kwargs["base_model"]][2]), num_threads=2, device_id=0, images_directory=train_data_path)
pipe.build()
DATA_SIZE = 0 # set this variable manually, equals to total number of files in training
VALIDATION_SIZE = 0 # # set this variable manually, equals to total number of files in training
ITERATIONS_PER_EPOCH = DATA_SIZE // batch_size
VALIDATION_STEPS = VALIDATION_SIZE // batch_size
assert DATA_SIZE != 0
assert VALIDATION_SIZE != 0
train_data_loader = DALIClassificationIterator([pipe], size=ITERATIONS_PER_EPOCH)
pipe2 = HybridPipelineTest(batch_size=batch_size, output_size = list(pretrained_models[kwargs["base_model"]][2]), num_threads=2, device_id=0, images_directory=test_data_path)
pipe2.build()
test_data_loader = DALIClassificationIterator([pipe2], size=VALIDATION_STEPS)
else:
print("Setting up Data Directories")
train_data = torchvision.datasets.ImageFolder(
root=train_data_path, transform=model.train_transformation
)
test_data = torchvision.datasets.ImageFolder(
root=test_data_path, transform=model.test_transformation
)
train_data_loader = torch.utils.data.DataLoader(
train_data, batch_size=batch_size, shuffle=True
)
test_data_loader = torch.utils.data.DataLoader(
test_data, batch_size=batch_size, shuffle=True
)
optimizer = optimizers[kwargs["optimizer"]](
model.model.parameters(), lr=learning_rate
)
print("Starting Training")
model.train(
optimizer,
torch.nn.CrossEntropyLoss(),
train_data_loader,
test_data_loader,
epochs=kwargs["epoch"],
device=device,
dali=kwargs["nvidiadali"]
)
print("Completed Training")