-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_precision_recall_all_queries.py
466 lines (363 loc) · 17.8 KB
/
main_precision_recall_all_queries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
from pathlib import Path
from diskindexwriter import DiskIndexWriter
from documents import DocumentCorpus, DirectoryCorpus
from indexes import Index
from indexes.diskpositionalindex import DiskPositionalIndex
from indexes.positionalinvertedindex import PositionalInvertedIndex
from ranked_strategy import DefaultStrategy, RankedStrategy, TraditionalStrategy, OkapiBM25Strategy, WackyStrategy
from text.englishtokenstream import EnglishTokenStream
from time import time_ns
from text.newtokenprocessor import NewTokenProcessor
from numpy import log as ln
from math import sqrt
from typing import List
from heapq import nlargest
import matplotlib.pyplot as plt
def index_corpus(corpus: DocumentCorpus) -> (Index, List[float], List[int], int, float, float):
print("Indexing..")
token_processor = NewTokenProcessor()
index = PositionalInvertedIndex()
document_weights = [] # Ld for all documents in corpus
document_tokens_length_per_document = [] # docLengthd - Number of tokens in a document
document_tokens_length_total = 0 # total number of tokens in all the documents in corpus
average_tftds = [] # ave(tftd) - average tftd count for a particular document
byte_size_ds = [] # byteSized - number of bytes in the file for document d
for d in corpus:
# print("Processing the document: ", d)
term_tftd = {} # Term -> Term Frequency in a document
stream = EnglishTokenStream(d.get_content())
document_tokens_length_d = 0 # docLengthd - number of tokens in the document d
position = 1
for token in stream:
terms = token_processor.process_token(token)
for term in terms:
if term not in term_tftd.keys():
term_tftd[term] = 0 # Initialization
term_tftd[term] += 1
index.add_term(term=term, position=position, doc_id=d.id)
position += 1
# number of tokens in document d
document_tokens_length_d += 1
Ld = 0
for tftd in term_tftd.values():
wdt = 1 + ln(tftd)
wdt = wdt ** 2
Ld += wdt
Ld = sqrt(Ld)
document_weights.append(Ld)
# docLengthd - update the number of tokens for the document
document_tokens_length_per_document.append(document_tokens_length_d)
# update the sum of tokens in all documents
document_tokens_length_total = document_tokens_length_total + document_tokens_length_d
# ave(tftd) - average tftd count for a particular document
total_tftd = 0
average_tftd = 0
for tf in term_tftd.values():
total_tftd += tf
# print("Total tftd and len(term_tftf) for doc d: ", d.get_file_name(), total_tftd, len(term_tftd))
# Handling empty files
if total_tftd == 0 or len(term_tftd) == 0:
average_tftds.append(average_tftd)
else:
average_tftd = total_tftd / len(term_tftd)
average_tftds.append(average_tftd)
# byteSized - number of bytes in the file for document d
byte_size_d = d.get_file_size()
byte_size_ds.append(byte_size_d)
# docLengthA - average number of tokens in all documents in the corpus
document_tokens_length_average = document_tokens_length_total / len(corpus)
return index, document_weights, document_tokens_length_per_document, byte_size_ds, average_tftds, document_tokens_length_average
" Main Application of Search Engine "
if __name__ == "__main__":
corpus_path = Path("relevance_cranfield")
corpus = DirectoryCorpus.load_json_directory(corpus_path, ".json")
index, document_weights, document_tokens_length_per_document, byte_size_d, average_tftd, \
document_tokens_length_average = index_corpus(corpus)
index_path = corpus_path / "index"
index_path = index_path.resolve()
if not index_path.is_dir():
index_path.mkdir()
# corpus_size = len(document_weights)
corpus_size = len(list(corpus_path.glob("*.json")))
# RANKED RETRIEVAL
index_writer = DiskIndexWriter(index_path, document_weights, document_tokens_length_per_document,
byte_size_d, average_tftd, document_tokens_length_average)
# Write Disk Positional Inverted Index once
if not index_writer.posting_path.is_file():
index_writer.write_index(index)
disk_index = DiskPositionalIndex(index_writer, num_docs=corpus_size)
strategyMap = {1: DefaultStrategy, 2: TraditionalStrategy, 3: OkapiBM25Strategy, 4: WackyStrategy}
# Open the queries file and each line is a query. Loop through each line as a single query and calculate
# MAP for each query
f = open("relevance_cranfield/relevance/queries", "r")
queries = f.readlines()
f.close()
# Go through the relevant documents from the qrel file, each line corresponds to single query
f = open("relevance_cranfield/relevance/qrel", "r")
relevant_documents = f.readlines()
f.close()
# count = 0
# # Strips the newline character
# for line in relevant_documents:
# count += 1
# print("Line{}: {}".format(count, line.strip()))
# For default strategy
strategy = strategyMap.get(1)
rankedStrategy_default = RankedStrategy(strategy)
# For traditional strategy
strategy = strategyMap.get(2)
rankedStrategy_traditional = RankedStrategy(strategy)
# For okapi strategy
strategy = strategyMap.get(3)
rankedStrategy_okapi = RankedStrategy(strategy)
# For wacky strategy
strategy = strategyMap.get(4)
rankedStrategy_wacky = RankedStrategy(strategy)
total_average_precision = 0
response_time = 0
mean_response_time = 0
print("\n############### Default STRATEGY ####################\n")
# loop through each query
for i in range(0, len(queries)):
# get the query i
query = queries[i]
# Relevant documents for the query i
relevant_document = relevant_documents[i].split()
for j in range(0, len(relevant_document)):
relevant_document[j] = int(relevant_document[j])
########################## Default ##############################
start = time_ns()
# For default strategy
accumulator = rankedStrategy_default.calculate(query, disk_index, corpus_size)
end = time_ns()
#print(f"Ranked Retrieval took: {(end - start) / 1e+9} secs\n")
response_time += (end - start) / 1e+9
query_result_documents = []
K = 50
heap = [(score, doc_id) for doc_id, score in accumulator.items()]
#print(f"Top {K} documents for query: {query}")
for k_documents in nlargest(K, heap):
score, doc_id = k_documents
# print(f"Doc filename: {corpus.get_document(doc_id).get_file_name()}, Score: {score}")
query_result_documents.append(corpus.get_document(doc_id).get_file_name())
for j in range(0, len(query_result_documents)):
query_result_documents[j] = int(query_result_documents[j])
# Calculate the average precision for the query
total_relevant_documents = len(relevant_document)
# print("\nRelevant documents found in the ranked retrieval query result: ")
# for document in query_result_documents:
# if document in relevant_document:
# print("Doc filename: ", document)
# Calculate the precision
precisions = []
relevant_count = 0
sum = 0
for j in range(0, len(query_result_documents)):
if query_result_documents[j] in relevant_document:
relevant_count += 1
precision = relevant_count / (j + 1)
# sum += relevant_count / (i + 1)
sum += precision
precisions.append(precision)
else:
precisions.append(relevant_count / (j + 1))
# print("Precisions: ", precisions)
# print("Sum: ", sum)
# Divide by the total number of relevant documents for average precision for the query
average_precision_default = sum / total_relevant_documents
total_average_precision += average_precision_default
# print(f"Query: {query}Average precision: {average_precision} \n")
print("Total average precision: ", total_average_precision)
print("Total number of queries: ", len(queries))
MAP = total_average_precision / len(queries)
print(f"MAP: {MAP}")
mean_response_time = response_time / len(queries)
average_throughput = 1 / mean_response_time
print(f"Mean Response Time to satisfy a query:{mean_response_time}")
print(f"Throughput(queries/second) of the system:{average_throughput} ")
# ############################## OKAPI Strategy ##############################################
print("\n############### OKAPI STRATEGY ####################\n")
total_average_precision = 0
response_time = 0
mean_response_time = 0
# loop through each query
for i in range(0, len(queries)):
# get the query i
query = queries[i]
# Relevant documents for the query i
relevant_document = relevant_documents[i].split()
for j in range(0, len(relevant_document)):
relevant_document[j] = int(relevant_document[j])
start = time_ns()
# For default strategy
accumulator = rankedStrategy_okapi.calculate(query, disk_index, corpus_size)
end = time_ns()
#print(f"Ranked Retrieval took: {(end - start) / 1e+9} secs\n")
response_time += (end - start) / 1e+9
query_result_documents = []
K = 50
heap = [(score, doc_id) for doc_id, score in accumulator.items()]
#print(f"Top {K} documents for query: {query}")
for k_documents in nlargest(K, heap):
score, doc_id = k_documents
# print(f"Doc filename: {corpus.get_document(doc_id).get_file_name()}, Score: {score}")
query_result_documents.append(corpus.get_document(doc_id).get_file_name())
for j in range(0, len(query_result_documents)):
query_result_documents[j] = int(query_result_documents[j])
# Calculate the average precision for the query
total_relevant_documents = len(relevant_document)
# print("\nRelevant documents found in the ranked retrieval query result: ")
# for document in query_result_documents:
# if document in relevant_document:
# print("Doc filename: ", document)
# Calculate the precision
precisions = []
relevant_count = 0
sum = 0
for j in range(0, len(query_result_documents)):
if query_result_documents[j] in relevant_document:
relevant_count += 1
precision = relevant_count / (j + 1)
# sum += relevant_count / (i + 1)
sum += precision
precisions.append(precision)
else:
precisions.append(relevant_count / (j + 1))
# print("Precisions: ", precisions)
# print("Sum: ", sum)
# Divide by the total number of relevant documents for average precision for the query
average_precision_default = sum / total_relevant_documents
total_average_precision += average_precision_default
# print(f"Query: {query}Average precision: {average_precision} \n")
print("Total average precision: ", total_average_precision)
print("Total number of queries: ", len(queries))
MAP = total_average_precision / len(queries)
print(f"MAP: {MAP}")
mean_response_time = response_time / len(queries)
average_throughput = 1 / mean_response_time
print(f"Mean Response Time to satisfy a query:{mean_response_time}")
print(f"Throughput(queries/second) of the system:{average_throughput} ")
# ####################### Traditional-tf-idf ###################################
print("\n############### TRADITIONAL STRATEGY ####################\n")
total_average_precision = 0
response_time = 0
mean_response_time = 0
# loop through each query
for i in range(0, len(queries)):
# get the query i
query = queries[i]
# Relevant documents for the query i
relevant_document = relevant_documents[i].split()
for j in range(0, len(relevant_document)):
relevant_document[j] = int(relevant_document[j])
start = time_ns()
# For default strategy
accumulator = rankedStrategy_traditional.calculate(query, disk_index, corpus_size)
end = time_ns()
#print(f"Ranked Retrieval took: {(end - start) / 1e+9} secs\n")
response_time += (end - start) / 1e+9
query_result_documents = []
K = 50
heap = [(score, doc_id) for doc_id, score in accumulator.items()]
#print(f"Top {K} documents for query: {query}")
for k_documents in nlargest(K, heap):
score, doc_id = k_documents
# print(f"Doc filename: {corpus.get_document(doc_id).get_file_name()}, Score: {score}")
query_result_documents.append(corpus.get_document(doc_id).get_file_name())
for j in range(0, len(query_result_documents)):
query_result_documents[j] = int(query_result_documents[j])
# Calculate the average precision for the query
total_relevant_documents = len(relevant_document)
# print("\nRelevant documents found in the ranked retrieval query result: ")
# for document in query_result_documents:
# if document in relevant_document:
# print("Doc filename: ", document)
# Calculate the precision
precisions = []
relevant_count = 0
sum = 0
for j in range(0, len(query_result_documents)):
if query_result_documents[j] in relevant_document:
relevant_count += 1
precision = relevant_count / (j + 1)
# sum += relevant_count / (i + 1)
sum += precision
precisions.append(precision)
else:
precisions.append(relevant_count / (j + 1))
# print("Precisions: ", precisions)
# print("Sum: ", sum)
# Divide by the total number of relevant documents for average precision for the query
average_precision_default = sum / total_relevant_documents
total_average_precision += average_precision_default
# print(f"Query: {query}Average precision: {average_precision} \n")
print("Total average precision: ", total_average_precision)
print("Total number of queries: ", len(queries))
MAP = total_average_precision / len(queries)
print(f"MAP: {MAP}")
mean_response_time = response_time / len(queries)
average_throughput = 1 / mean_response_time
print(f"Mean Response Time to satisfy a query:{mean_response_time}")
print(f"Throughput(queries/second) of the system:{average_throughput} ")
# ####################### Wacky ###################################
print("\n############### WACKY STRATEGY ####################\n")
total_average_precision = 0
response_time = 0
mean_response_time = 0
# loop through each query
for i in range(0, len(queries)):
# get the query i
query = queries[i]
# Relevant documents for the query i
relevant_document = relevant_documents[i].split()
for j in range(0, len(relevant_document)):
relevant_document[j] = int(relevant_document[j])
start = time_ns()
# For default strategy
accumulator = rankedStrategy_wacky.calculate(query, disk_index, corpus_size)
end = time_ns()
#print(f"Ranked Retrieval took: {(end - start) / 1e+9} secs\n")
response_time += (end - start) / 1e+9
query_result_documents = []
K = 50
heap = [(score, doc_id) for doc_id, score in accumulator.items()]
#print(f"Top {K} documents for query: {query}")
for k_documents in nlargest(K, heap):
score, doc_id = k_documents
# print(f"Doc filename: {corpus.get_document(doc_id).get_file_name()}, Score: {score}")
query_result_documents.append(corpus.get_document(doc_id).get_file_name())
for j in range(0, len(query_result_documents)):
query_result_documents[j] = int(query_result_documents[j])
# Calculate the average precision for the query
total_relevant_documents = len(relevant_document)
# print("\nRelevant documents found in the ranked retrieval query result: ")
# for document in query_result_documents:
# if document in relevant_document:
# print("Doc filename: ", document)
# Calculate the precision
precisions = []
relevant_count = 0
sum = 0
for j in range(0, len(query_result_documents)):
if query_result_documents[j] in relevant_document:
relevant_count += 1
precision = relevant_count / (j + 1)
# sum += relevant_count / (i + 1)
sum += precision
precisions.append(precision)
else:
precisions.append(relevant_count / (j + 1))
# print("Precisions: ", precisions)
# print("Sum: ", sum)
# Divide by the total number of relevant documents for average precision for the query
average_precision_default = sum / total_relevant_documents
total_average_precision += average_precision_default
# print(f"Query: {query}Average precision: {average_precision} \n")
print("Total average precision: ", total_average_precision)
print("Total number of queries: ", len(queries))
MAP = total_average_precision / len(queries)
print(f"MAP: {MAP}")
mean_response_time = response_time / len(queries)
average_throughput = 1 / mean_response_time
print(f"Mean Response Time to satisfy a query:{mean_response_time}")
print(f"Throughput(queries/second) of the system:{average_throughput} ")