forked from kaist-dmlab/TFAS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch_space.py
97 lines (73 loc) · 2.95 KB
/
search_space.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import argparse
import numpy as np
BACKBONE = ['Inception', 'ConvNeXt', 'ResNeXt']
BLOCK_LEVEL = {
'top_k': [1, 2, 3, 4, 5],
'e_layers': [2, 3, 4, 5, 6],
'dropout': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5],
'embed': ['timeF', 'fixed', 'learned'],
}
BACKBONE_LEVEL = {
'd_model': {
'long_term_forecast': [16, 32, 64, 128, 256],
'short_term_forecast': [8, 16, 32, 64],
'imputation': [32, 64, 128],
'classification': [16, 32, 64],
'anomaly_detection': [16, 32, 64, 128]
},
'ff_ratio': [1., 1.25, 1.5, 1.75, 2.],
'num_kernels': [2, 4, 6, 8, 10]
}
def get_initial_architecture(task_name):
arch = {
'top_k': np.random.choice(BLOCK_LEVEL['top_k']),
'e_layers': np.random.choice(BLOCK_LEVEL['e_layers']),
'dropout': np.random.choice(BLOCK_LEVEL['dropout']),
'embed': np.random.choice(BLOCK_LEVEL['embed']),
'num_kernels': np.random.choice(BACKBONE_LEVEL['num_kernels'])
}
arch['d_model'] = np.random.choice(BACKBONE_LEVEL['d_model'][task_name])
arch['d_ff'] = min(int(arch['d_model'] * np.random.choice(BACKBONE_LEVEL['ff_ratio'])), 512)
return arch
def get_random_architectures_block(N=1):
arch_list = []
for _ in range(N):
arch = {
'top_k': np.random.choice(BLOCK_LEVEL['top_k']),
'e_layers': np.random.choice(BLOCK_LEVEL['e_layers']),
'dropout': np.random.choice(BLOCK_LEVEL['dropout']),
'embed': np.random.choice(BLOCK_LEVEL['embed']),
}
arch['d_model'] = 64
arch['d_ff'] = 64
arch['num_kernels'] = 6
arch_list.append(arch)
return arch_list
def get_random_architectures_backbone(task_name, N=1):
arch_list = []
for _ in range(N):
arch = {
'top_k': 3,
'e_layers': 3,
'dropout': 0.1,
'embed': 'timeF',
'num_kernels': np.random.choice(BACKBONE_LEVEL['num_kernels'])
}
arch['d_model'] = np.random.choice(BACKBONE_LEVEL['d_model'][task_name])
arch['d_ff'] = min(int(arch['d_model'] * np.random.choice(BACKBONE_LEVEL['ff_ratio'])), 512)
arch_list.append(arch)
return arch_list
def get_random_architectures(task_name, N=1):
arch_list = []
for _ in range(N):
arch = {
'top_k': np.random.choice(BLOCK_LEVEL['top_k']),
'e_layers': np.random.choice(BLOCK_LEVEL['e_layers']),
'dropout': np.random.choice(BLOCK_LEVEL['dropout']),
'embed': np.random.choice(BLOCK_LEVEL['embed']),
'num_kernels': np.random.choice(BACKBONE_LEVEL['num_kernels'])
}
arch['d_model'] = np.random.choice(BACKBONE_LEVEL['d_model'][task_name])
arch['d_ff'] = min(int(arch['d_model'] * np.random.choice(BACKBONE_LEVEL['ff_ratio'])), 512)
arch_list.append(arch)
return arch_list