forked from kaist-dmlab/TFAS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
searcher.py
355 lines (294 loc) · 16.6 KB
/
searcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import argparse, os, logging, warnings, json, uuid, random
logging.disable(logging.WARNING)
warnings.filterwarnings('ignore')
import time
import torch
import search_space
import numpy as np
import experiments as exp_setup
from torch import nn
from exp.exp_long_term_forecasting import Exp_Long_Term_Forecast
from exp.exp_imputation import Exp_Imputation
from exp.exp_short_term_forecasting import Exp_Short_Term_Forecast
from exp.exp_anomaly_detection import Exp_Anomaly_Detection
from exp.exp_classification import Exp_Classification
from zc_proxies.TimeZC.main_proxy import compute_zc_score
from statsmodels.tsa.seasonal import STL
from scipy.fft import fft, dct
from pywt import dwt
from data_provider.m4 import M4Meta
from data_provider.data_factory import data_provider
method_name = f'TimesNAS'
fix_seed = 2021
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
def main(Exp, args):
exp = Exp(args)
if args.task_name == 'classification':
_, train_loader = exp._get_data(flag='TRAIN')
else:
_, train_loader = exp._get_data(flag='train')
trainbatches = []
td_infos, dft_infos, dwt_infos = [], [], []
for i, batch in enumerate(train_loader):
batch_td, batch_dft, batch_dwt = [], [], []
if i == args.maxbatch:
break
# idx = np.random.choice(args.batch_size)
if args.task_name == 'long_term_forecast':
batch_x = batch[0]
for idx in range(args.batch_size):
x_resid = []
for v in range(batch_x[idx].shape[1]):
stl_result = STL(batch_x[idx][:, v], period=3).fit()
x_resid.append(stl_result.resid)
batch_td.append(np.array(x_resid).transpose())
batch_dft.append(torch.fft.fft(batch_x[idx]).abs().numpy())
batch_dwt.append(np.concatenate(dwt(batch_x[idx].numpy(), 'haar')))
elif args.task_name == 'short_term_forecast':
batch_x = batch[0]
for idx in range(args.batch_size):
x_resid = []
for v in range(batch_x[idx].shape[1]):
stl_result = STL(batch_x[idx][:, v], period=3).fit()
x_resid.append(stl_result.resid)
batch_td.append(np.array(x_resid).transpose())
batch_dft.append(torch.fft.fft(batch_x[idx]).abs().numpy())
batch_dwt.append(np.concatenate(dwt(batch_x[idx].numpy(), 'haar')))
elif args.task_name == 'classification':
batch_x = batch[0]
for idx in range(args.batch_size):
x_resid = []
for v in range(batch_x[idx].shape[1]):
stl_result = STL(batch_x[idx][:, v], period=3).fit()
x_resid.append(stl_result.resid)
batch_td.append(np.array(x_resid).transpose())
batch_dft.append(torch.fft.fft(batch_x[idx]).abs().numpy())
batch_dwt.append(np.concatenate(dwt(batch_x[idx].numpy(), 'haar')))
elif args.task_name == 'anomaly_detection':
batch_x = batch[0]
for idx in range(args.batch_size):
x_resid = []
for v in range(batch_x[idx].shape[1]):
stl_result = STL(batch_x[idx][:, v], period=3).fit()
x_resid.append(stl_result.resid)
batch_td.append(np.array(x_resid).transpose())
batch_dft.append(torch.fft.fft(batch_x[idx]).abs().numpy())
batch_dwt.append(np.concatenate(dwt(batch_x[idx].numpy(), 'haar')))
elif args.task_name == 'imputation':
batch_x = batch[0]
for idx in range(args.batch_size):
x_resid = []
for v in range(batch_x[idx].shape[1]):
stl_result = STL(batch_x[idx][:, v], period=3).fit()
x_resid.append(stl_result.resid)
batch_td.append(np.array(x_resid).transpose())
batch_dft.append(torch.fft.fft(batch_x[idx]).abs().numpy())
batch_dwt.append(np.concatenate(dwt(batch_x[idx].numpy(), 'haar')))
td_infos.append(torch.Tensor(batch_td))
dft_infos.append(torch.Tensor(batch_dft))
dwt_infos.append(torch.Tensor(batch_dwt))
trainbatches.append(batch)
for subset_size in [int(args.population_size)]:
popu_structure_list = []
popu_zero_shot_score_list = []
candidate_archs = np.load(f'arch_results/{args.task_name}_{subset_size}.npy', allow_pickle=True)
start_timer = time.time()
for arch_configs in candidate_archs:
args.d_model = arch_configs['d_model']
args.d_ff = arch_configs['d_ff']
args.num_kernels = arch_configs['num_kernels']
args.top_k = arch_configs['top_k']
args.e_layers = arch_configs['e_layers']
args.dropout = arch_configs['dropout']
args.embed = arch_configs['embed']
args.td_size = td_infos[0].shape[1]
args.dft_size = dft_infos[0].shape[1]
args.dwt_size = dwt_infos[0].shape[1]
print(args.model_id)
print(arch_configs)
exp = Exp(args) # set experiments
the_nas_score = compute_zc_score(exp, args, trainbatches, td_infos=td_infos, dft_infos=dft_infos, dwt_infos=dwt_infos)
popu_structure_list.append(arch_configs)
popu_zero_shot_score_list.append(the_nas_score)
end_time = time.time() - start_timer
# export best structure
best_score = max(popu_zero_shot_score_list)
best_idx = popu_zero_shot_score_list.index(best_score)
best_structure_str = popu_structure_list[best_idx]
# summary architecture:score pairs
arch_scores = {
'best': {
'arch_configs': best_structure_str,
'score': best_score,
'idx': best_idx
},
'arch_scores': {
'candidate_archs': popu_structure_list,
'cadidate_scores': popu_zero_shot_score_list
},
'search_time': end_time
}
np.save(f'zc_results/{args.task_name}/{args.data_name}.npy', arch_scores, allow_pickle=True)
print(f'Saved! >>> zc_results/{args.task_name}/{args.data_name}.npy')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='TimesNAS')
# ZiCo
parser.add_argument('--population_size', type=int, default=1000, help='population size of evolution.')
parser.add_argument('--save_dir', type=str, default=None, help='output directory')
parser.add_argument('--maxbatch', type=int, default=2, help='N in Eq. (15)')
# TimesNAS
parser.add_argument('--dft_size', type=int, default=None, help='size of auxiliary task infomartion')
parser.add_argument('--dwt_size', type=int, default=None, help='size of auxiliary frequency-domain decomposition infomartion')
parser.add_argument('--td_size', type=int, default=None, help='size of auxiliary time-domain decomposition infomartion')
parser.add_argument('--method_name', type=str, default='TimesNAS', help='searcher method')
parser.add_argument('--data_name', type=str, help='semantic data name')
# basic config
parser.add_argument('--task_name', type=str, required=True, default='long_term_forecast', help='task name, options:[long_term_forecast, short_term_forecast, imputation, classification, anomaly_detection]')
parser.add_argument('--is_training', type=int, default=1, help='status')
parser.add_argument('--model_id', type=str, default='test', help='model id')
parser.add_argument('--model', type=str, default='Autoformer', help='model name, options: [Autoformer, Transformer, TimesNet]')
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
# data loader
parser.add_argument('--data', type=str, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M', help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h', help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
parser.add_argument('--seasonal_patterns', type=str, default='Monthly', help='subset for M4')
# inputation task
parser.add_argument('--mask_rate', type=float, default=0.25, help='mask ratio')
# anomaly detection task
parser.add_argument('--anomaly_ratio', type=float, default=0.25, help='prior anomaly ratio (%)')
# model define
parser.add_argument('--top_k', type=int, default=5, help='for TimesBlock')
parser.add_argument('--num_kernels', type=int, default=6, help='for Inception')
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--distil', action='store_false', help='whether to use distilling in encoder, using this argument means not using distilling', default=True)
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--embed', type=str, default='timeF', help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
# optimization
parser.add_argument('--num_workers', type=int, default=40, help='data loader num workers')
parser.add_argument('--itr', type=int, default=1, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='MSE', help='loss function')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
args = parser.parse_args()
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
gpu = args.gpu
if gpu is not None:
torch.cuda.set_device('cuda:{}'.format(gpu))
torch.backends.cudnn.benchmark = True
data_name = args.data_name
args.is_training = 1
args.model = 'TimesNAS'
args.des = 'Exp'
args.itr = 1
if args.task_name == 'long_term_forecast':
args.features = 'M'
args.seq_len = 96
args.label_len = 48
args.train_epochs = exp_setup.TRAINING_CONFIGS[args.task_name]['train_epochs']
args.learning_rate = exp_setup.TRAINING_CONFIGS[args.task_name]['lr']
Exp = Exp_Long_Term_Forecast
args.data = exp_setup.DATA_CONFIGS[data_name]['data']
args.enc_in = exp_setup.DATA_CONFIGS[data_name]['enc_in']
args.dec_in = exp_setup.DATA_CONFIGS[data_name]['dec_in']
args.c_out = exp_setup.DATA_CONFIGS[data_name]['c_out']
args.root_path = exp_setup.DATA_CONFIGS[data_name]['root_path']
args.data_path = exp_setup.DATA_CONFIGS[data_name]['data_path']
pred_lens = [96, 192, 336, 720]
for pred_len in pred_lens:
args.model_id = f'{data_name}_96_{pred_len}'
args.pred_len = pred_len
main(Exp, args)
elif args.task_name == 'short_term_forecast':
args.root_path = './dataset/m4'
args.data = 'm4'
args.features = 'M'
args.loss = 'SMAPE'
args.enc_in = 1
args.dec_in = 1
args.c_out = 1
args.batch_size = exp_setup.TRAINING_CONFIGS[args.task_name]['batch_size']
args.train_epochs = exp_setup.TRAINING_CONFIGS[args.task_name]['train_epochs']
args.learning_rate = exp_setup.TRAINING_CONFIGS[args.task_name]['lr']
Exp = Exp_Short_Term_Forecast
for seasonal_patterns in M4Meta.seasonal_patterns:
args.seasonal_patterns = seasonal_patterns
args.model_id = f'm4_{seasonal_patterns}'
main(Exp, args)
elif args.task_name == 'classification':
args.data = 'UEA'
args.batch_size = exp_setup.TRAINING_CONFIGS[args.task_name]['batch_size']
args.train_epochs = exp_setup.TRAINING_CONFIGS[args.task_name]['train_epochs']
args.learning_rate = exp_setup.TRAINING_CONFIGS[args.task_name]['lr']
args.patience = 10
Exp = Exp_Classification
args.root_path = f'./dataset/{data_name}/'
args.model_id = data_name
main(Exp, args)
elif args.task_name == 'anomaly_detection':
args.seq_len = 100
args.features = 'M'
args.pred_len = 0
args.batch_size = exp_setup.TRAINING_CONFIGS[args.task_name]['batch_size']
args.train_epochs = exp_setup.TRAINING_CONFIGS[args.task_name]['train_epochs']
args.learning_rate = exp_setup.TRAINING_CONFIGS[args.task_name]['lr']
Exp = Exp_Anomaly_Detection
args.root_path = f'./dataset/{data_name}'
args.model_id = data_name.upper()
args.data = exp_setup.DATA_CONFIGS[data_name]['data']
args.enc_in = exp_setup.DATA_CONFIGS[data_name]['enc_in']
args.c_out = exp_setup.DATA_CONFIGS[data_name]['c_out']
args.anomaly_ratio = exp_setup.DATA_CONFIGS[data_name]['anomaly_ratio']
main(Exp, args)
elif args.task_name == 'imputation':
args.features = 'M'
args.seq_len = 96
args.pred_len = 0
args.label_len = 0
args.batch_size = exp_setup.TRAINING_CONFIGS[args.task_name]['batch_size']
args.train_epochs = exp_setup.TRAINING_CONFIGS[args.task_name]['train_epochs']
args.learning_rate = exp_setup.TRAINING_CONFIGS[args.task_name]['lr']
Exp = Exp_Imputation
args.data = exp_setup.DATA_CONFIGS[data_name]['data']
args.root_path = exp_setup.DATA_CONFIGS[data_name]['root_path']
args.data_path = exp_setup.DATA_CONFIGS[data_name]['data_path']
args.enc_in = exp_setup.DATA_CONFIGS[data_name]['enc_in']
args.c_out = exp_setup.DATA_CONFIGS[data_name]['c_out']
ratios = [0.125, 0.25, 0.375, 0.5]
for ratio in ratios:
args.model_id = f'{data_name}_mask_{str(ratio)}'
args.mask_rate = ratio
main(Exp, args)
else:
print('not implemented task!')
exit()