forked from kaist-dmlab/TFAS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
454 lines (391 loc) · 20.5 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
import argparse, os, logging, warnings, json, uuid, random
import torch
import numpy as np
import experiments as exp_setup
from data_provider.m4 import M4Meta
from exp.exp_long_term_forecasting import Exp_Long_Term_Forecast
from exp.exp_imputation import Exp_Imputation
from exp.exp_short_term_forecasting import Exp_Short_Term_Forecast
from exp.exp_anomaly_detection import Exp_Anomaly_Detection
from exp.exp_classification import Exp_Classification
if __name__ == '__main__':
fix_seed = 2021
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
parser = argparse.ArgumentParser(description='TimesNAS')
# basic config
parser.add_argument('--task_name', type=str, required=True, default='long_term_forecast',
help='task name, options:[long_term_forecast, short_term_forecast, imputation, classification, anomaly_detection]')
parser.add_argument('--is_training', type=int, default=1, help='status')
parser.add_argument('--model_id', type=str, default='test', help='model id')
parser.add_argument('--model', type=str, default='TimesNAS',
help='model name, options: [Autoformer, Transformer, TimesNet]')
# TimesNAS
parser.add_argument('--dft_size', type=int, default=None, help='size of auxiliary task infomartion')
parser.add_argument('--dwt_size', type=int, default=None, help='size of auxiliary frequency-domain decomposition infomartion')
parser.add_argument('--td_size', type=int, default=None, help='size of auxiliary time-domain decomposition infomartion')
parser.add_argument('--method_name', type=str, default='TimesNAS', help='searcher method')
parser.add_argument('--data_name', type=str, help='semantic data name')
# data loader
parser.add_argument('--data', type=str, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
parser.add_argument('--seasonal_patterns', type=str, default='Monthly', help='subset for M4')
# inputation task
parser.add_argument('--mask_rate', type=float, default=0.25, help='mask ratio')
# anomaly detection task
parser.add_argument('--anomaly_ratio', type=float, default=0.25, help='prior anomaly ratio (%)')
# model define
parser.add_argument('--top_k', type=int, default=5, help='for TimesBlock')
parser.add_argument('--num_kernels', type=int, default=6, help='for Inception')
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=3, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='MSE', help='loss function')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
# de-stationary projector params
parser.add_argument('--p_hidden_dims', type=int, nargs='+', default=[128, 128],
help='hidden layer dimensions of projector (List)')
parser.add_argument('--p_hidden_layers', type=int, default=2, help='number of hidden layers in projector')
args = parser.parse_args()
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
gpu = args.gpu
if gpu is not None:
torch.cuda.set_device('cuda:{}'.format(gpu))
torch.backends.cudnn.benchmark = True
args.is_training = 1
args.model = 'TimesNAS'
args.des = 'Exp'
args.itr = 3
args.batch_size = exp_setup.TRAINING_CONFIGS[args.task_name]['batch_size']
args.train_epochs = exp_setup.TRAINING_CONFIGS[args.task_name]['train_epochs']
args.learning_rate = exp_setup.TRAINING_CONFIGS[args.task_name]['lr']
if args.task_name == 'long_term_forecast':
args.features = 'M'
args.seq_len = 96
args.label_len = 48
args.data = exp_setup.DATA_CONFIGS[args.data_name]['data']
args.enc_in = exp_setup.DATA_CONFIGS[args.data_name]['enc_in']
args.dec_in = exp_setup.DATA_CONFIGS[args.data_name]['dec_in']
args.c_out = exp_setup.DATA_CONFIGS[args.data_name]['c_out']
args.root_path = exp_setup.DATA_CONFIGS[args.data_name]['root_path']
args.data_path = exp_setup.DATA_CONFIGS[args.data_name]['data_path']
args.model_id = f'{args.data_name}_96_{args.pred_len}'
Exp = Exp_Long_Term_Forecast
elif args.task_name == 'short_term_forecast':
args.root_path = './dataset/m4'
args.data = 'm4'
args.features = 'M'
args.loss = 'SMAPE'
args.enc_in = 1
args.dec_in = 1
args.c_out = 1
Exp = Exp_Short_Term_Forecast
elif args.task_name == 'imputation':
args.features = 'M'
args.seq_len = 96
args.pred_len = 0
args.label_len = 0
args.model_id = f'{args.data_name}_mask_{args.mask_rate}'
args.data = exp_setup.DATA_CONFIGS[args.data_name]['data']
args.root_path = exp_setup.DATA_CONFIGS[args.data_name]['root_path']
args.data_path = exp_setup.DATA_CONFIGS[args.data_name]['data_path']
args.enc_in = exp_setup.DATA_CONFIGS[args.data_name]['enc_in']
args.c_out = exp_setup.DATA_CONFIGS[args.data_name]['c_out']
Exp = Exp_Imputation
elif args.task_name == 'anomaly_detection':
args.seq_len = 100
args.features = 'M'
args.pred_len = 0
args.root_path = f'./dataset/{args.data_name}'
args.model_id = args.data_name.upper()
args.data = exp_setup.DATA_CONFIGS[args.data_name]['data']
args.enc_in = exp_setup.DATA_CONFIGS[args.data_name]['enc_in']
args.c_out = exp_setup.DATA_CONFIGS[args.data_name]['c_out']
args.anomaly_ratio = exp_setup.DATA_CONFIGS[args.data_name]['anomaly_ratio']
Exp = Exp_Anomaly_Detection
elif args.task_name == 'classification':
args.data = 'UEA'
args.patience = 10
args.root_path = f'./dataset/{args.data_name}/'
args.model_id = args.data_name
Exp = Exp_Classification
for ii in range(args.itr):
# setting record of experiments
if args.task_name == 'long_term_forecast':
arch_configs = np.load(f'zc_results/{args.task_name}/{args.data_name}.npy', allow_pickle=True).item()
args.d_model = arch_configs['d_model']
args.d_ff = arch_configs['d_ff']
args.num_kernels = arch_configs['num_kernels']
args.top_k = arch_configs['top_k']
args.e_layers = arch_configs['e_layers']
args.dropout = arch_configs['dropout']
args.embed = arch_configs['embed']
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
print('Args in experiment:')
print(args)
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
_, train_stats = exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
mae, mse, rmse, mape, mspe = exp.test(setting)
torch.cuda.empty_cache()
arch_perf = {
'key': setting,
'arch_configs': arch_configs,
'train_stats': train_stats,
'final_mae': mae,
'final_mse': mse,
'final_rmse': rmse,
'final_mape': mape,
'final_mspe': mspe,
}
np.save(f"arch_results/{args.task_name}/{args.method_name}_{setting}_Final.npy", arch_perf)
print(f'SAVED {setting} !!!')
elif args.task_name == 'short_term_forecast':
key_id = str(uuid.uuid1())[:8]
arch_perf = {
'key': f'm4_overall_{key_id}',
'arch_configs': {},
'train_stats': {},
}
for idx, seasonal_patterns in enumerate(M4Meta.seasonal_patterns):
args.seasonal_patterns = seasonal_patterns
args.model_id = f'm4_{seasonal_patterns}'
arch_configs = np.load(f'zc_results/{args.task_name}/{args.seasonal_patterns}.npy', allow_pickle=True).item()
args.d_model = arch_configs['d_model']
args.d_ff = arch_configs['d_ff']
args.num_kernels = arch_configs['num_kernels']
args.top_k = arch_configs['top_k']
args.e_layers = arch_configs['e_layers']
args.dropout = arch_configs['dropout']
args.embed = arch_configs['embed']
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
print('Args in experiment:')
print(args)
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
_, train_stats = exp.train(setting)
arch_perf['train_stats'][seasonal_patterns] = train_stats
arch_perf['arch_configs'][seasonal_patterns] = arch_configs
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
final_perf = exp.test(setting)
if idx == len(M4Meta.seasonal_patterns) - 1 and final_perf != None:
smape_results, owa_results, mape, mase = final_perf
arch_perf['final_smape'] = smape_results
arch_perf['final_owa'] = owa_results
arch_perf['final_mape'] = mape
arch_perf['final_mase'] = mase
torch.cuda.empty_cache()
np.save(f"arch_results/{args.task_name}/{args.method_name}_{setting}_Final.npy", arch_perf)
print(f'SAVED {setting} !!!')
elif args.task_name == 'classification':
arch_configs = np.load(f'zc_results/{args.task_name}/{args.data_name}.npy', allow_pickle=True).item()
args.d_model = arch_configs['d_model']
args.d_ff = arch_configs['d_ff']
args.num_kernels = arch_configs['num_kernels']
args.top_k = arch_configs['top_k']
args.e_layers = arch_configs['e_layers']
args.dropout = arch_configs['dropout']
args.embed = arch_configs['embed']
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
print('Args in experiment:')
print(args)
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
_, train_stats = exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
final_acc = exp.test(setting)
torch.cuda.empty_cache()
arch_perf = {
'key': setting,
'arch_configs': arch_configs,
'train_stats': train_stats,
'final_acc': final_acc
}
np.save(f"arch_results/{args.task_name}/{args.method_name}_{setting}_Final.npy", arch_perf)
print(f'SAVED {setting} !!!')
elif args.task_name == 'anomaly_detection':
arch_configs = np.load(f'zc_results/{args.task_name}/{args.data_name}.npy', allow_pickle=True).item()
args.d_model = arch_configs['d_model']
args.d_ff = arch_configs['d_ff']
args.num_kernels = arch_configs['num_kernels']
args.top_k = arch_configs['top_k']
args.e_layers = arch_configs['e_layers']
args.dropout = arch_configs['dropout']
args.embed = arch_configs['embed']
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
print('Args in experiment:')
print(args)
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
_, train_stats = exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
accuracy, precision, recall, f_score = exp.test(setting)
torch.cuda.empty_cache()
arch_perf = {
'key': setting,
'arch_configs': arch_configs,
'train_stats': train_stats,
'final_acc': accuracy,
'final_precision': precision,
'final_recall': recall,
'final_f1': f_score
}
np.save(f"arch_results/{args.task_name}/{args.method_name}_{setting}_Final.npy", arch_perf)
print(f'SAVED {setting} !!!')
elif args.task_name == 'imputation' and ii > 0:
arch_configs = np.load(f'zc_results/{args.task_name}/{args.data_name}.npy', allow_pickle=True).item()
args.d_model = arch_configs['d_model']
args.d_ff = arch_configs['d_ff']
args.num_kernels = arch_configs['num_kernels']
args.top_k = arch_configs['top_k']
args.e_layers = arch_configs['e_layers']
args.dropout = arch_configs['dropout']
args.embed = arch_configs['embed']
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
print('Args in experiment:')
print(args)
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
_, train_stats = exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
mae, mse, rmse, mape, mspe = exp.test(setting)
torch.cuda.empty_cache()
arch_perf = {
'key': setting,
'arch_configs': arch_configs,
'train_stats': train_stats,
'final_mae': mae,
'final_mse': mse,
'final_rmse': rmse,
'final_mape': mape,
'final_mspe': mspe
}
np.save(f"arch_results/{args.task_name}/{args.method_name}_{setting}_Final.npy", arch_perf)
print(f'SAVED {setting} !!!')