forked from zhohn0/fcrn_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
138 lines (113 loc) · 4.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from loader import *
import os
from fcrn import FCRN
from torch.autograd import Variable
from weights import load_weights
from utils import load_split, loss_mse, loss_huber
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plot
dtype = torch.cuda.FloatTensor
weights_file = "./model/NYU_ResNet-UpProj.npy"
def main():
batch_size = 16
data_path = './data/nyu_depth_v2_labeled.mat'
learning_rate = 1.0e-4
monentum = 0.9
weight_decay = 0.0005
num_epochs = 100
# 1.Load data
train_lists, val_lists, test_lists = load_split()
print("Loading data...")
train_loader = torch.utils.data.DataLoader(NyuDepthLoader(data_path, train_lists),
batch_size=batch_size, shuffle=False, drop_last=True)
val_loader = torch.utils.data.DataLoader(NyuDepthLoader(data_path, val_lists),
batch_size=batch_size, shuffle=True, drop_last=True)
test_loader = torch.utils.data.DataLoader(NyuDepthLoader(data_path, test_lists),
batch_size=batch_size, shuffle=True, drop_last=True)
print(train_loader)
# 2.Load model
print("Loading model...")
model = FCRN(batch_size)
model.load_state_dict(load_weights(model, weights_file, dtype)) #加载官方参数,从tensorflow转过来
#加载训练模型
resume_from_file = False
resume_file = './model/model_300.pth'
if resume_from_file:
if os.path.isfile(resume_file):
checkpoint = torch.load(resume_file)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
print("loaded checkpoint '{}' (epoch {})"
.format(resume_file, checkpoint['epoch']))
else:
print("can not find!")
model = model.cuda()
# 3.Loss
# 官方MSE
# loss_fn = torch.nn.MSELoss()
# 自定义MSE
# loss_fn = loss_mse()
# 论文的loss,the reverse Huber
loss_fn = loss_huber()
print("loss_fn set...")
# 4.Optim
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
print("optimizer set...")
# 5.Train
best_val_err = 1.0e-4
start_epoch = 0
for epoch in range(num_epochs):
print('Starting train epoch %d / %d' % (start_epoch + epoch + 1, num_epochs + start_epoch))
model.train()
running_loss = 0
count = 0
epoch_loss = 0
for input, depth in train_loader:
input_var = Variable(input.type(dtype))
depth_var = Variable(depth.type(dtype))
output = model(input_var)
loss = loss_fn(output, depth_var)
print('loss: %f' % loss.data.cpu().item())
count += 1
running_loss += loss.data.cpu().numpy()
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss = running_loss / count
print('epoch loss:', epoch_loss)
# validate
model.eval()
num_correct, num_samples = 0, 0
loss_local = 0
with torch.no_grad():
for input, depth in val_loader:
input_var = Variable(input.type(dtype))
depth_var = Variable(depth.type(dtype))
output = model(input_var)
if num_epochs == epoch + 1:
# 关于保存的测试图片可以参考 loader 的写法
# input_rgb_image = input_var[0].data.permute(1, 2, 0).cpu().numpy().astype(np.uint8)
input_rgb_image = input[0].data.permute(1, 2, 0)
input_gt_depth_image = depth_var[0][0].data.cpu().numpy().astype(np.float32)
pred_depth_image = output[0].data.squeeze().cpu().numpy().astype(np.float32)
input_gt_depth_image /= np.max(input_gt_depth_image)
pred_depth_image /= np.max(pred_depth_image)
plot.imsave('./result/input_rgb_epoch_{}.png'.format(start_epoch + epoch + 1), input_rgb_image)
plot.imsave('./result/gt_depth_epoch_{}.png'.format(start_epoch + epoch + 1), input_gt_depth_image, cmap="viridis")
plot.imsave('./result/pred_depth_epoch_{}.png'.format(start_epoch + epoch + 1), pred_depth_image, cmap="viridis")
loss_local += loss_fn(output, depth_var)
num_samples += 1
err = float(loss_local) / num_samples
print('val_error: %f' % err)
if err < best_val_err or epoch == num_epochs - 1:
best_val_err = err
torch.save({
'epoch': start_epoch + epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, './model/model_' + str(start_epoch + epoch + 1) + '.pth')
if epoch % 10 == 0:
learning_rate = learning_rate * 0.8
if __name__ == '__main__':
main()