forked from zhohn0/fcrn_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
115 lines (95 loc) · 3.72 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
# 自定义损失函数
class loss_huber(nn.Module):
def __init__(self):
super(loss_huber,self).__init__()
def forward(self, pred, truth):
c = pred.shape[1] #通道
h = pred.shape[2] #高
w = pred.shape[3] #宽
pred = pred.view(-1, c * h * w)
truth = truth.view(-1, c * h * w)
# 根据当前batch所有像素计算阈值
t = 0.2 * torch.max(torch.abs(pred - truth))
# 计算L1范数
l1 = torch.mean(torch.mean(torch.abs(pred - truth), 1), 0)
# 计算论文中的L2
l2 = torch.mean(torch.mean(((pred - truth)**2 + t**2) / t / 2, 1), 0)
if l1 > t:
return l2
else:
return l1
class loss_mse(nn.Module):
def __init__(self):
super(loss_mse, self).__init__()
def forward(self, pred, truth):
c = pred.shape[1]
h = pred.shape[2]
w = pred.shape[3]
pred = pred.view(-1, c * h * w)
truth = truth.view(-1, c * h * w)
return torch.mean(torch.mean((pred - truth), 1)**2, 0)
if __name__ == '__main__':
loss = loss_huber()
x = torch.zeros(2, 1, 2, 2)
y = torch.ones(2, 1, 2, 2)
c = x.shape[1]
h = x.shape[2]
w = x.shape[3]
r = loss(x, y)
print(r)
# 加载数据集的index
def load_split():
current_directoty = os.getcwd()
train_lists_path = current_directoty + '/data/trainIdxs.txt'
test_lists_path = current_directoty + '/data/testIdxs.txt'
train_f = open(train_lists_path)
test_f = open(test_lists_path)
train_lists = []
test_lists = []
train_lists_line = train_f.readline()
while train_lists_line:
train_lists.append(int(train_lists_line) - 1)
train_lists_line = train_f.readline()
train_f.close()
test_lists_line = test_f.readline()
while test_lists_line:
test_lists.append(int(test_lists_line) - 1)
test_lists_line = test_f.readline()
test_f.close()
val_start_idx = int(len(train_lists) * 0.8)
val_lists = train_lists[val_start_idx:-1]
train_lists = train_lists[0:val_start_idx]
return train_lists, val_lists, test_lists
# 测试网络
def validate(model, val_loader, loss_fn, dtype):
# validate
model.eval()
num_correct, num_samples = 0, 0
loss_local = 0
with torch.no_grad():
for input, depth in val_loader:
input_var = Variable(input.type(dtype))
depth_var = Variable(depth.type(dtype))
output = model(input_var)
if num_epochs == epoch + 1:
# 关于保存的测试图片可以参考 loader 的写法
# input_rgb_image = input_var[0].data.permute(1, 2, 0).cpu().numpy().astype(np.uint8)
input_rgb_image = input[0].data.permute(1, 2, 0)
input_gt_depth_image = depth_var[0][0].data.cpu().numpy().astype(np.float32)
pred_depth_image = output[0].data.squeeze().cpu().numpy().astype(np.float32)
input_gt_depth_image /= np.max(input_gt_depth_image)
pred_depth_image /= np.max(pred_depth_image)
plot.imsave('./result/input_rgb_epoch_{}.png'.format(start_epoch + epoch + 1), input_rgb_image)
plot.imsave('./result/gt_depth_epoch_{}.png'.format(start_epoch + epoch + 1), input_gt_depth_image,
cmap="viridis")
plot.imsave('./result/pred_depth_epoch_{}.png'.format(start_epoch + epoch + 1), pred_depth_image,
cmap="viridis")
loss_local += loss_fn(output, depth_var)
num_samples += 1
err = float(loss_local) / num_samples
print('val_error: %f' % err)