-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgraphviz-makefile-flow.dot
73 lines (56 loc) · 2.56 KB
/
graphviz-makefile-flow.dot
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
/* Makefile Flow Summary
Shows the flow of a typical data science project using a Makefile. The Makefile automates the process of setting up the project, importing and cleaning data, performing EDA, training and evaluating a machine learning model, and running utility tasks like formatting code, linting, cleaning up files, and formatting docstrings.
This diagram is created with the assistance of Claude Sonnet, an AI assistant by Anthropic.
*/
digraph MakefileFlow {
node [shape=box, fontname="Arial"]
rankdir=LR // Arrange nodes from left to right
nodesep=1.0 // Increase the vertical separation between nodes
// Title
labelloc="t"
label="Makefile Flow Summary\n(Created with assistance from Claude, an AI assistant by Anthropic)"
subgraph cluster_setup {
label = "Setup"
bgcolor = "#ADD8E6" # lightblue
style = filled
create_dirs [label="create_dirs\nCreate data, output, and model_output directories"]
activate_venv [label="activate_venv\nActivate Python virtual environment"]
install [label="install\nInstall Python packages from requirements.txt"]
{rank=same; create_dirs -> activate_venv -> install [style=invis]}
}
subgraph cluster_data {
label = "Data"
bgcolor = "#90EE90" # lightgreen
style = filled
import_data [label="import_data\nImport data from Kaggle"]
clean_data [label="clean_data\nClean and preprocess the data"]
eda [label="eda\nPerform Exploratory Data Analysis (EDA)"]
split_data [label="split_data\nSplit data into train and test sets"]
{rank=same; import_data -> clean_data -> eda -> split_data [style=invis]}
}
subgraph cluster_model {
label = "Model"
bgcolor = "#FFA07A" # lightsalmon
style = filled
evaluate_model [label="evaluate_model\nEvaluate the machine learning model"]
}
subgraph cluster_utility {
label = "Utility"
bgcolor = "#D3D3D3" # lightgray
style = filled
format [label="format\nFormat code using Black"]
lint [label="lint\nLint code using Pylint"]
clean [label="clean\nClean up files and directories"]
docstring [label="docstring\nFormat docstrings using pyment"]
{rank=same; format -> lint -> clean -> docstring [style=invis]}
}
// Setup flow
create_dirs -> activate_venv -> install
// Data flow
import_data -> clean_data -> eda -> split_data -> evaluate_model
// Utility targets
install -> format
install -> lint
install -> clean
install -> docstring
}