-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFace_recognition
169 lines (118 loc) · 5.05 KB
/
Face_recognition
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#Step 1 - Create Training Data
#___________________________________________________________________________________________________
import cv2
import numpy as np
# Load HAAR face classifier
face_classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# Load functions
def face_extractor(img):
# Function detects faces and returns the cropped face
# If no face detected, it returns the input image
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(gray, 1.3, 5)
if faces is ():
return None
# Crop all faces found
for (x,y,w,h) in faces:
cropped_face = img[y:y+h, x:x+w]
return cropped_face
# Initialize Webcam
cap = cv2.VideoCapture(0)
count = 0
# Collect 100 samples of your face from webcam input
while True:
ret, frame = cap.read()
if face_extractor(frame) is not None:
count += 1
face = cv2.resize(face_extractor(frame), (200, 200))
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
# Save file in specified directory with unique name
file_name_path = './faces/user/' + str(count) + '.jpg'
cv2.imwrite(file_name_path, face)
# Put count on images and display live count
cv2.putText(face, str(count), (50, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,0), 2)
cv2.imshow('Face Cropper', face)
else:
print("Face not found")
pass
if cv2.waitKey(1) == 13 or count == 100: #13 is the Enter Key
break
cap.release()
cv2.destroyAllWindows()
print("Collecting Samples Complete")
#__________________________________________________________________________________________________________________________
import cv2
import numpy as np
from os import listdir
from os.path import isfile, join
# Get the training data we previously made
data_path = './faces/user/'
onlyfiles = [f for f in listdir(data_path) if isfile(join(data_path, f))]
# Create arrays for training data and labels
Training_Data, Labels = [], []
# Open training images in our datapath
# Create a numpy array for training data
for i, files in enumerate(onlyfiles):
image_path = data_path + onlyfiles[i]
images = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
Training_Data.append(np.asarray(images, dtype=np.uint8))
Labels.append(i)
# Create a numpy array for both training data and labels
Labels = np.asarray(Labels, dtype=np.int32)
# Initialize facial recognizer
# model = cv2.face.createLBPHFaceRecognizer()
# NOTE: For OpenCV 3.0 use cv2.face.createLBPHFaceRecognizer()
# pip install opencv-contrib-python
# model = cv2.createLBPHFaceRecognizer()
vimal_model = cv2.face_LBPHFaceRecognizer.create()
# Let's train our model
vimal_model.train(np.asarray(Training_Data), np.asarray(Labels))
print("Model trained sucessefully")
#____________________________________________________________________________________________________________________________________________________________
import cv2
import numpy as np
import os
face_classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
def face_detector(img, size=0.5):
# Convert image to grayscale
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(gray, 1.3, 5)
if faces is ():
return img, []
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,255),2)
roi = img[y:y+h, x:x+w]
roi = cv2.resize(roi, (200, 200))
return img, roi
# Open Webcam
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
image, face = face_detector(frame)
try:
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
# Pass face to prediction model
# "results" comprises of a tuple containing the label and the confidence value
results = vimal_model.predict(face)
# harry_model.predict(face)
if results[1] < 500:
confidence = int( 100 * (1 - (results[1])/400) )
display_string = str(confidence) + '% Confident it is User'
cv2.putText(image, display_string, (100, 120), cv2.FONT_HERSHEY_COMPLEX, 1, (255,120,150), 2)
if confidence > 90:
cv2.putText(image, "Hey Vimal", (250, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,0), 2)
cv2.imshow('Face Recognition', image )
break
else:
cv2.putText(image, "I dont know, how r u", (250, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 2)
cv2.imshow('Face Recognition', image )
except:
cv2.putText(image, "No Face Found", (220, 120) , cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 2)
cv2.putText(image, "looking for face", (250, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 2)
cv2.imshow('Face Recognition', image )
pass
if cv2.waitKey(1) == 13: #13 is the Enter Key
break
cap.release()
cv2.destroyAllWindows()
#__________________________________________________________________________________________________________