This repository contains the data processing and training code for EgoMimic - Both for Human Aria and Robot teleoperated Data. To rollout policies in the real world, you'll additionally need our hardware repo Eve.
Useful Links
egomimic/scripts/aloha_process
: Process raw aloha style data into a robomimic style hdf5, compatible for training here.egomimic/scripts/aria_process
: Process human embodiment data from Aria Glasses into a robomimic style hdf5.egomimic/algo
: Algorithm code for Egomimic, as well as ACT and mimicplay baselinesegomimic/configs
: Train configs for each algorithmegomimic/scripts/pl_train.py
: Main training script, powered by Pytorch Lightning (DDP enabled)data_processing.md
: Instructions to process your own data, both Aria Human data and teleoperated robot data.
git clone --recursive [email protected]:SimarKareer/EgoMimic.git
cd EgoMimic
conda env create -f environment.yaml
pip install projectaria-tools'[all]'
pip install -e external/robomimic
pip install -e .
python external/robomimic/robomimic/scripts/setup_macros.py
Set git config --global submodule.recurse true
if you want git pull
to automatically update the submodule as well.
Then go to external/robomimic/robomimic/macros_private.py
and manually add your wandb username. Make sure you have ran wandb login
too.
Download Sample Data
mkdir datasets
cd datasets
## Groceries
wget https://huggingface.co/datasets/gatech/EgoMimic/resolve/main/groceries_human.hdf5
wget https://huggingface.co/datasets/gatech/EgoMimic/resolve/main/groceries_robot.hdf5
## Laundry
wget https://huggingface.co/datasets/gatech/EgoMimic/resolve/main/smallclothfold_human.hdf5
wget https://huggingface.co/datasets/gatech/EgoMimic/resolve/main/smallclothfold_robot.hdf5
## Bowlplace
wget https://huggingface.co/datasets/gatech/EgoMimic/resolve/main/bowlplace_human.hdf5
wget https://huggingface.co/datasets/gatech/EgoMimic/resolve/main/bowlplace_robot.hdf5
EgoMimic Training (Toy in Bowl Task)
python scripts/pl_train.py --config configs/egomimic_oboo.json --dataset /path/to/bowlplace_robot.hdf5 --dataset_2 /path/to/bowlplace_human.hdf5 --debug
ACT Baseline Training
python scripts/pl_train.py --config configs/act.json --dataset /path/to/bowlplace_robot.hdf5 --debug
For a detailed list of commands to run each experiment see experiment_launch.md
Use --debug
to check that the pipeline works
Launching runs via submitit / slurm
python scripts/pl_submit.py --config <config> --name <name> --description <description> --gpus-per-node <gpus-per-node>`
Training creates a folder for each experiment
./trained_models_highlevel/description/name
├── videos (generated offline validation videos)
├── logs (wandb logs)
├── slurm (slurm logs if launched via slurm)
├── config.json (copy of config used to launch this run)
├── models (model ckpts)
├── ds1_norm_stats.pkl (robot dataset normalization stats)
└── ds2_norm_stats.pkl (hand data norm stats if training egomimic)
Offline Eval:
python scripts/pl_train.py --dataset <dataset> --ckpt_path <ckpt> --eval
Follow these instructions on the desktop connected to the real hardware.
- Follow instructions in Eve
- Install the hardware package into the
emimic
conda env via
conda activate emimic
cd ~/interbotix_ws/src/eve
pip install -e .
- Rollout policy
cd EgoMimic/egomimic
python scripts/evaluation/eval_real --eval-path <path to>EgoPlay/trained_models_highlevel/<your model folder>/models/<your ckpt>.ckpt