-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEnSF_linear_randomshocks.py
454 lines (407 loc) · 17.7 KB
/
EnSF_linear_randomshocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
from __future__ import print_function
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
from netCDF4 import Dataset
import sys, time, os
from sqgturb import SQG, rfft2, irfft2, cartdist,enkf_update,gaspcohn, bulk_ensrf
from Enscore import EnSF
import torch
hcovlocal_scale = 2200*1000 #float(sys.argv[1])
covinflate1 = 0.3
covinflate2 = -1
exptname = os.getenv('exptname','Jump_EnSF_64_random')
threads = int(os.getenv('OMP_NUM_THREADS','1'))
diff_efold = None # use diffusion from climo file
profile = False # turn on profiling?
use_letkf = True # use LETKF
global_enkf = False # global EnSRF solve
read_restart = False
# if savedata not None, netcdf filename will be defined by env var 'exptname'
# if savedata = 'restart', only last time is saved (so expt can be restarted)
#savedata = True
#savedata = 'restart'
savedata = None
#nassim = 101
#nassim_spinup = 1
nassim = 300 # assimilation times to run
nassim_spinup = 100
direct_insertion = False
if direct_insertion: print('# direct insertion!')
nanals = 20 # ensemble members
oberrstdev = 1. # ob error standard deviation in K
# nature run created using sqg_run.py.
filename_climo = 'sqg_N64_12hrly.nc' # file name for forecast model climo
# perfect model
filename_truth = 'sqg_N64_12hrly.nc' # file name for nature run to draw obs
#filename_truth = 'sqg_N256_N96_12hrly.nc' # file name for nature run to draw obs
print('# filename_modelclimo=%s' % filename_climo)
print('# filename_truth=%s' % filename_truth)
# fix random seed for reproducibility.
rsobs = np.random.RandomState(42) # fixed seed for observations
rsics = np.random.RandomState() # varying seed for initial conditions
rsjump = np.random.RandomState(24) # fixed seed for observations
# get model info
nc_climo = Dataset(filename_climo)
# parameter used to scale PV to temperature units.
scalefact = nc_climo.f*nc_climo.theta0/nc_climo.g
# initialize qg model instances for each ensemble member.
x = nc_climo.variables['x'][:]
y = nc_climo.variables['y'][:]
x, y = np.meshgrid(x, y)
nx = len(x); ny = len(y)
dt = nc_climo.dt
if diff_efold == None: diff_efold=nc_climo.diff_efold
pvens = np.empty((nanals,2,ny,nx),np.float32)
if not read_restart:
pv_climo = nc_climo.variables['pv']
indxran = rsics.choice(pv_climo.shape[0],size=nanals,replace=False)
else:
ncinit = Dataset('%s_restart.nc' % exptname, mode='r', format='NETCDF4_CLASSIC')
ncinit.set_auto_mask(False)
pvens[:] = ncinit.variables['pv_b'][-1,...]/scalefact
tstart = ncinit.variables['t'][-1]
#for nanal in range(nanals):
# print(nanal, pvens[nanal].min(), pvens[nanal].max())
# get OMP_NUM_THREADS (threads to use) from environment.
models = []
for nanal in range(nanals):
if not read_restart:
pvens[nanal] = pv_climo[indxran[nanal]]
#print(nanal, pvens[nanal].min(), pvens[nanal].max())
pvens[nanal] = pv_climo[0] + np.random.normal(0,1000,size=(2,ny,nx))
models.append(\
SQG(pvens[nanal],
nsq=nc_climo.nsq,f=nc_climo.f,dt=dt,U=nc_climo.U,H=nc_climo.H,\
r=nc_climo.r,tdiab=nc_climo.tdiab,symmetric=nc_climo.symmetric,\
diff_order=nc_climo.diff_order,diff_efold=diff_efold,threads=threads))
if read_restart: ncinit.close()
# vertical localization scale
Lr = np.sqrt(models[0].nsq)*models[0].H/models[0].f
vcovlocal_fact = gaspcohn(np.array(Lr/hcovlocal_scale))
#vcovlocal_fact = 0.0 # no increment at opposite boundary
#vcovlocal_fact = 1.0 # no vertical localization
print('# use_letkf=%s global_enkf=%s' % (use_letkf,global_enkf))
print("# hcovlocal=%g vcovlocal=%s diff_efold=%s covinf1=%s covinf2=%s nanals=%s" %\
(hcovlocal_scale/1000.,vcovlocal_fact,diff_efold,covinflate1,covinflate2,nanals))
# if nobs > 0, each ob time nobs ob locations are randomly sampled (without
# replacement) from the model grid
# if nobs < 0, fixed network of every Nth grid point used (N = -nobs)
#nobs = nx*ny//16 # number of obs to assimilate (randomly distributed)
nobs = -1 # fixed network, every -nobs grid points. nobs=-1 obs at all pts.
# nature run
nc_truth = Dataset(filename_truth)
pv_truth = nc_truth.variables['pv']
# set up arrays for obs and localization function
if nobs < 0:
nskip = -nobs
if (nx*ny)%nobs != 0:
raise ValueError('nx*ny must be divisible by nobs')
nobs = (nx*ny)//nskip**2
print('# fixed network nobs = %s' % nobs)
fixed = True
else:
fixed = False
print('# random network nobs = %s' % nobs)
if nobs == nx*ny//2: fixed=True # used fixed network for obs every other grid point
oberrvar = oberrstdev**2*np.ones(nobs,float)
pvob = np.empty((2,nobs),float)
covlocal = np.empty((ny,nx),float)
covlocal_tmp = np.empty((nobs,nx*ny),float)
xens = np.empty((nanals,2,nx*ny),float)
if not use_letkf:
obcovlocal = np.empty((nobs,nobs),float)
else:
obcovlocal = None
if global_enkf: # model-space localization matrix
n = 0
covlocal_modelspace = np.empty((nx*ny,nx*ny),float)
x1 = x.reshape(nx*ny); y1 = y.reshape(nx*ny)
for n in range(nx*ny):
dist = cartdist(x1[n],y1[n],x1,y1,nc_climo.L,nc_climo.L)
covlocal_modelspace[n,:] = gaspcohn(dist/hcovlocal_scale)
obtimes = nc_truth.variables['t'][:]
if read_restart:
timeslist = obtimes.tolist()
ntstart = timeslist.index(tstart)
print('# restarting from %s.nc ntstart = %s' % (exptname,ntstart))
else:
ntstart = 0
assim_interval = obtimes[1]-obtimes[0]
assim_timesteps = int(np.round(assim_interval/models[0].dt))
print('# assim interval = %s secs (%s time steps)' % (assim_interval,assim_timesteps))
print('# ntime,pverr_a,pvsprd_a,pverr_b,pvsprd_b,obinc_b,osprd_b,obinc_a,obsprd_a,omaomb/oberr,obbias_b,inflation,tr(P^a)/tr(P^b)')
# initialize model clock
for nanal in range(nanals):
models[nanal].t = obtimes[ntstart]
models[nanal].timesteps = assim_timesteps
# initialize output file.
if savedata is not None:
nc = Dataset('%s.nc' % exptname, mode='w', format='NETCDF4_CLASSIC')
nc.r = models[0].r
nc.f = models[0].f
nc.U = models[0].U
nc.L = models[0].L
nc.H = models[0].H
nc.nanals = nanals
nc.hcovlocal_scale = hcovlocal_scale
nc.vcovlocal_fact = vcovlocal_fact
nc.oberrstdev = oberrstdev
nc.g = nc_climo.g; nc.theta0 = nc_climo.theta0
nc.nsq = models[0].nsq
nc.tdiab = models[0].tdiab
nc.dt = models[0].dt
nc.diff_efold = models[0].diff_efold
nc.diff_order = models[0].diff_order
nc.filename_climo = filename_climo
nc.filename_truth = filename_truth
nc.symmetric = models[0].symmetric
xdim = nc.createDimension('x',models[0].N)
ydim = nc.createDimension('y',models[0].N)
z = nc.createDimension('z',2)
t = nc.createDimension('t',None)
obs = nc.createDimension('obs',nobs)
ens = nc.createDimension('ens',nanals)
pv_t =\
nc.createVariable('pv_t',np.float32,('t','z','y','x'),zlib=True)
pv_c =\
nc.createVariable('pv_c',np.float32,('t','ens','z','y','x'),zlib=True)
pv_b =\
nc.createVariable('pv_b',np.float32,('t','ens','z','y','x'),zlib=True)
pv_a =\
nc.createVariable('pv_a',np.float32,('t','ens','z','y','x'),zlib=True)
pv_a.units = 'K'
pv_b.units = 'K'
pv_c.units = 'K'
inf = nc.createVariable('inflation',np.float32,('t','z','y','x'),zlib=True)
pv_obs = nc.createVariable('obs',np.float32,('t','obs'))
x_obs = nc.createVariable('x_obs',np.float32,('t','obs'))
y_obs = nc.createVariable('y_obs',np.float32,('t','obs'))
# eady pv scaled by g/(f*theta0) so du/dz = d(pv)/dy
xvar = nc.createVariable('x',np.float32,('x',))
xvar.units = 'meters'
yvar = nc.createVariable('y',np.float32,('y',))
yvar.units = 'meters'
zvar = nc.createVariable('z',np.float32,('z',))
zvar.units = 'meters'
tvar = nc.createVariable('t',np.float32,('t',))
tvar.units = 'seconds'
ensvar = nc.createVariable('ens',np.int32,('ens',))
ensvar.units = 'dimensionless'
xvar[:] = np.arange(0,models[0].L,models[0].L/models[0].N)
yvar[:] = np.arange(0,models[0].L,models[0].L/models[0].N)
zvar[0] = 0; zvar[1] = models[0].H
ensvar[:] = np.arange(1,nanals+1)
# initialize kinetic energy error/spread spectra
kespec_errmean = None; kespec_sprdmean = None
ncount = 0
nanals2 = 4 # ensemble members used for kespec spread
init_std_x_state = (pvens.reshape(nanals,2*nx*ny)).std(axis=0)
#Jump
percentage = 0.5
noiselevel=np.array((1500,1200,900,600))
noise_idx = np.array((1,1 - percentage*0.1 ,1 - percentage*0.3 , 1 - percentage*0.6 ,1-percentage))
jump_dist = rsjump.uniform(0,1,300)
jump = np.where(jump_dist > 1-percentage)[0]
# Initialize an empty dictionary
jump_idx = {}
for i in range(len(noiselevel)):
value = noiselevel[i]
keys = np.where((jump_dist <= noise_idx[i]) & (jump_dist > noise_idx[i+1]))[0].tolist()
for key in keys:
jump_idx[key] = value
if jump[0] == 0:
jump = np.delete(jump, 0)
try:
# Attempt to delete the key-value pair
del jump_idx[0]
except KeyError:
# Handle the case where the key does not exist
print("Key '{}' does not exist in the dictionary.".format(0))
for ntime in range(nassim): #nassim
# check model clock
if models[0].t != obtimes[ntime+ntstart]:
raise ValueError('model/ob time mismatch %s vs %s' %\
(models[0].t, obtimes[ntime+ntstart]))
t1 = time.time()
if not fixed:
# randomly choose points from model grid
if nobs == nx*ny:
indxob = np.arange(nx*ny)
else:
indxob = np.sort(rsobs.choice(nx*ny,nobs,replace=False))
else:
mask = np.zeros((ny,nx),bool)
# if every other grid point observed, shift every other time step
# so every grid point is observed in 2 cycles.
if nobs == nx*ny//2:
if ntime%2:
mask[0:ny,1:nx:2] = True
else:
mask[0:ny,0:nx:2] = True
else:
mask[0:ny:nskip,0:nx:nskip] = True
indxob = np.flatnonzero(mask)
if (ntime == jump).any():
jumpnoise = rsjump.normal(0,jump_idx[ntime],size=(1,2,ny,nx))
jumpnoise_reshape =jumpnoise.reshape(2,ny*nx)
for k in range(2):
# surface temp obs
if (ntime == jump).any():
pvob[k] = scalefact*(pv_truth[ntime+ntstart,k,:,:].ravel()[indxob] + jumpnoise_reshape[k])
else:
pvob[k] = scalefact*pv_truth[ntime+ntstart,k,:,:].ravel()[indxob]
pvob[k] += rsobs.normal(scale=oberrstdev,size=nobs) # add ob errors
xob = x.ravel()[indxob]
yob = y.ravel()[indxob]
# compute covariance localization function for each ob
if not fixed or ntime == 0:
for nob in range(nobs):
dist = cartdist(xob[nob],yob[nob],x,y,nc_climo.L,nc_climo.L)
covlocal = gaspcohn(dist/hcovlocal_scale)
covlocal_tmp[nob] = covlocal.ravel()
dist = cartdist(xob[nob],yob[nob],xob,yob,nc_climo.L,nc_climo.L)
if not use_letkf: obcovlocal[nob] = gaspcohn(dist/hcovlocal_scale)
# first-guess spread (need later to compute inflation factor)
fsprd = ((pvens - pvens.mean(axis=0))**2).sum(axis=0)/(nanals-1)
# compute forward operator.
# hxens is ensemble in observation space.
hxens = np.empty((nanals,2,nobs),float)
for nanal in range(nanals):
for k in range(2):
hxens[nanal,k,...] = scalefact*pvens[nanal,k,...].ravel()[indxob] # surface pv obs
hxensmean_b = hxens.mean(axis=0)
obsprd = ((hxens-hxensmean_b)**2).sum(axis=0)/(nanals-1)
# innov stats for background
obfits = pvob - hxensmean_b
obfits_b = (obfits**2).mean()
obbias_b = obfits.mean()
obsprd_b = obsprd.mean()
pvensmean_b = pvens.mean(axis=0).copy()
if (ntime == jump).any():
pverr_b = (scalefact*(pvensmean_b-pv_truth[ntime+ntstart]-jumpnoise))**2
else:
pverr_b = (scalefact*(pvensmean_b-pv_truth[ntime+ntstart]))**2
pvsprd_b = ((scalefact*(pvensmean_b-pvens))**2).sum(axis=0)/(nanals-1)
if savedata is not None:
if savedata == 'restart' and ntime != nassim-1:
pass
else:
pv_t[ntime] = pv_truth[ntime+ntstart]
pv_b[ntime,:,:,:] = scalefact*pvens
#pv_obs[ntime] = pvob
x_obs[ntime] = xob
y_obs[ntime] = yob
# EnKF update
EnSF_Update = EnSF(n_dim = nx*ny*2, ensemble_size = nanals ,eps_alpha=0.05, device= 'cuda' ,\
obs_sigma = oberrstdev, euler_steps = 1000, scalefact = nc_climo.f*nc_climo.theta0/nc_climo.g, init_std_x_state = init_std_x_state, ISarctan=False)
# create 1d state vector.
xens = pvens.reshape(nanals,2,nx*ny)
# update state vector.
if direct_insertion and nobs == nx*ny:
for nanal in range(nanals):
xens[nanal] =\
pv_truth[ntime+ntstart].reshape(2,nx*ny) + \
rsobs.normal(scale=oberrstdev,size=(2,nx*ny))/scalefact
xens = xens - xens.mean(axis=0) + \
pv_truth[ntime+ntstart].reshape(2,nx*ny) + \
rsobs.normal(scale=oberrstdev,size=(2,nx*ny))/scalefact
else:
# hxens,pvob are in PV units, xens is not
if global_enkf and not use_letkf:
xens = bulk_ensrf(xens,indxob,pvob,oberrvar,covlocal_modelspace,vcovlocal_fact,scalefact)
else:
xens =\
EnSF_Update.state_update_normalized(x_input = xens.reshape(nanals,2*nx*ny),state_target_input = pv_truth[ntime+ntstart].reshape(2*nx*ny), obs_input = pvob.reshape(2*nx*ny))
xens = xens.cpu().numpy()
# back to 3d state vector
pvens = xens.reshape((nanals,2,ny,nx))
t2 = time.time()
#print('cpu time for EnKF update',t2-t1)
if savedata is not None:
if savedata == 'restart' and ntime != nassim-1:
pass
else:
pv_c[ntime,:,:,:] = scalefact*pvens
# forward operator on posterior ensemble.
for nanal in range(nanals):
for k in range(2):
hxens[nanal,k,...] = scalefact*pvens[nanal,k,...].ravel()[indxob] # surface pv obs
# ob space diagnostics
hxensmean_a = hxens.mean(axis=0)
obsprd_a = (((hxens-hxensmean_a)**2).sum(axis=0)/(nanals-1)).mean()
# expected value is HPaHT (obsprd_a).
obinc_a = ((hxensmean_a-hxensmean_b)*(pvob-hxensmean_a)).mean()
# expected value is HPbHT (obsprd_b).
obinc_b = ((hxensmean_a-hxensmean_b)*(pvob-hxensmean_b)).mean()
# expected value R (oberrvar).
omaomb = ((pvob-hxensmean_a)*(pvob-hxensmean_b)).mean()
# posterior multiplicative inflation.
pvensmean_a = pvens.mean(axis=0)
pvprime = pvens-pvensmean_a
asprd = (pvprime**2).sum(axis=0)/(nanals-1)
asprd_over_fsprd = asprd.mean()/fsprd.mean()
if covinflate2 < 0:
# relaxation to prior stdev (Whitaker & Hamill 2012)
asprd = np.sqrt(asprd); fsprd = np.sqrt(fsprd)
inflation_factor = 1.+covinflate1*(fsprd-asprd)/asprd
else:
# Hodyss et al 2016 inflation (covinflate1=covinflate2=1 works well in perfect
# model, linear gaussian scenario)
# inflation = asprd + (asprd/fsprd)**2((fsprd/nanals)+2*inc**2/(nanals-1))
inc = pvensmean_a - pvensmean_b
inflation_factor = covinflate1*asprd + \
(asprd/fsprd)**2*((fsprd/nanals) + covinflate2*(2.*inc**2/(nanals-1)))
inflation_factor = np.sqrt(inflation_factor/asprd)
pvprime = pvprime*inflation_factor
#pvens = pvprime + pvensmean_a
# print out analysis error, spread and innov stats for background
if (ntime == jump).any():
pverr_a = (scalefact*(pvensmean_a-pv_truth[ntime+ntstart]-jumpnoise))**2
else:
pverr_a = (scalefact*(pvensmean_a-pv_truth[ntime+ntstart]))**2
pvsprd_a = ((scalefact*(pvensmean_a-pvens))**2).sum(axis=0)/(nanals-1)
print("%s %g %g %g %g %g %g %g %g %g %g %g %g" %\
(ntime+ntstart,np.sqrt(pverr_a.mean()),np.sqrt(pvsprd_a.mean()),\
np.sqrt(pverr_b.mean()),np.sqrt(pvsprd_b.mean()),\
obinc_b,obsprd_b,obinc_a,obsprd_a,omaomb/oberrvar.mean(),obbias_b,inflation_factor.mean(),asprd_over_fsprd))
# save data.
if savedata is not None:
if savedata == 'restart' and ntime != nassim-1:
pass
else:
pv_a[ntime,:,:,:] = scalefact*pvens
tvar[ntime] = obtimes[ntime+ntstart]
inf[ntime] = inflation_factor
nc.sync()
# run forecast ensemble to next analysis time
t1 = time.time()
for nanal in range(nanals):
pvens[nanal] = models[nanal].advance(pvens[nanal])
t2 = time.time()
#print('cpu time for ens forecast',t2-t1)
# compute spectra of error and spread
if ntime >= nassim_spinup:
pvfcstmean = pvens.mean(axis=0)
pverrspec = scalefact*rfft2(pvfcstmean - pv_truth[ntime+ntstart])
psispec = models[0].invert(pverrspec)
psispec = psispec/(models[0].N*np.sqrt(2.))
kespec = (models[0].ksqlsq*(psispec*np.conjugate(psispec))).real
if kespec_errmean is None:
kespec_errmean =\
(models[0].ksqlsq*(psispec*np.conjugate(psispec))).real
else:
kespec_errmean = kespec_errmean + kespec
for nanal in range(nanals2):
pvsprdspec = scalefact*rfft2(pvens[nanal] - pvfcstmean)
psispec = models[0].invert(pvsprdspec)
psispec = psispec/(models[0].N*np.sqrt(2.))
kespec = (models[0].ksqlsq*(psispec*np.conjugate(psispec))).real
if kespec_sprdmean is None:
kespec_sprdmean =\
(models[0].ksqlsq*(psispec*np.conjugate(psispec))).real/nanals2
else:
kespec_sprdmean = kespec_sprdmean+kespec/nanals2
ncount += 1
if savedata: nc.close()