-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_diffusion.py
577 lines (506 loc) · 36.2 KB
/
train_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
import os
import shutil
import torch
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
import pytorch_lightning as pl
from pytorch_lightning.profiler import SimpleProfiler, AdvancedProfiler
from pytorch_lightning import loggers as pl_loggers
from pathlib import Path
from datetime import datetime
from argparse import ArgumentParser, Namespace
from DuMMF.Diffusion import *
from data_amass import *
import functools
from DuMMF.diffusion.resample import LossAwareSampler, UniformSampler
from DuMMF.diffusion.resample import create_named_schedule_sampler
from pytorch3d.transforms import matrix_to_axis_angle, rotation_6d_to_matrix
from human_body_prior.models.vposer_model import VPoser
from human_body_prior.tools.model_loader import load_model
from render.mesh_viz import visualize_body_multi
from human_body_prior.body_model.body_model import BodyModel
from human_body_prior.tools.omni_tools import copy2cpu as c2c
from utils.utils import point2point_signed, vertex_normals
class LitInteraction(pl.LightningModule):
def __init__(self, args):
super().__init__()
if isinstance(args, dict):
args = Namespace(**args)
self.args = args
self.save_hyperparameters(args)
self.start_time = datetime.now().strftime("%m:%d:%Y_%H:%M:%S")
bm_fname = './mocap/body_models/smplh/neutral/model.npz'
dmpl_fname = './mocap/body_models/dmpls/neutral/model.npz'
bm_neutral = BodyModel(bm_fname=bm_fname, num_betas=16, num_dmpls=8, dmpl_fname=dmpl_fname).to(device)
self.faces = c2c(bm_neutral.f)
bm_fname = './mocap/body_models/smplh/male/model.npz'
dmpl_fname = './mocap/body_models/dmpls/male/model.npz'
bm_male = BodyModel(bm_fname=bm_fname, num_betas=16, num_dmpls=8, dmpl_fname=dmpl_fname).to(device)
bm_fname = './mocap/body_models/smplh/female/model.npz'
dmpl_fname = './mocap/body_models/dmpls/female/model.npz'
bm_female = BodyModel(bm_fname=bm_fname, num_betas=16, num_dmpls=8, dmpl_fname=dmpl_fname).to(device)
self.body_model = {'neutral': bm_neutral, 'male': bm_male, 'female': bm_female}
expr_dir = './mocap/body_models/V02_05'
vp, ps = load_model(expr_dir, model_code=VPoser,
remove_words_in_model_weights='vp_model.',
disable_grad=True)
self.vposer = vp.to(device)
self.model, self.diffusion = create_model_and_diffusion(args)
self.use_ddp = False
self.ddp_model = self.model
self.schedule_sampler_type = 'uniform'
self.schedule_sampler = create_named_schedule_sampler(self.schedule_sampler_type, self.diffusion)
def on_train_start(self) -> None:
# backup trainer.py and model
shutil.copy('./train_diffusion_v4.py', str(save_dir / 'train_diffusion.py'))
shutil.copy('./DuMMF/Diffusion_v4.py', str(save_dir / 'Duffusion.py'))
shutil.copy('./data_amass.py', str(save_dir / 'dataset.py'))
shutil.copy('./DuMMF/diffusion/gaussian_diffusion.py', str(save_dir / 'diffusion.py'))
return
def penetration(self, vert, verts):
face = torch.from_numpy(self.faces).unsqueeze(0).repeat(vert.shape[0], 1, 1).to(device)
normals = vertex_normals(vert, face)
o2h_signed, h2o_signed, o2h_idx, h2o_idx, o2h, h2o = point2point_signed(vert, verts, x_normals=normals, return_vector=True)
w = torch.zeros([o2h_signed.size(0), o2h_signed.size(1)]).to(device)
w_dist = (o2h_signed < 0.01) * (o2h_signed >= 0)
w_dist_neg = o2h_signed < 0
w[w_dist] = 0 # small weight for far away vertices
w[w_dist_neg] = 20 # large weight for penetration
loss_dist_o = 1 * torch.mean(torch.einsum('ij,ij->ij', torch.abs(o2h_signed), w), dim=1) #
return loss_dist_o
def pene_loss(self, body_rot_angle, body_trans, batch):
T, B, nq, np, D = body_rot_angle.shape
body_rot_angle = body_rot_angle.view(T, B * nq, np, -1)
body_trans = body_trans.view(T * B * nq, np, -1)
distance = (body_trans.unsqueeze(1) - body_trans.unsqueeze(2)).norm(dim=-1).min(dim=-1)[0]
indices = distance.min(dim=1)[1] # T * B * nq
betas = batch['betas'].unsqueeze(1).unsqueeze(0).repeat(T, 1, nq, 1, 1).view(T * B * nq * np, -1) # B, np, D
body_para = torch.cat([body_rot_angle.view(T * B * nq * np, -1), body_trans.view(T * B * nq * np, -1)], dim=1)
body_parms = {
'root_orient': body_para[:, :3].float().to(device), # controls the global root orientation
'pose_body': body_para[:, 3:66].float().to(device), # controls the body
'pose_hand': body_para[:, 66:-3].float().to(device), # controls the finger articulation
'trans': body_para[:, -3:].float().to(device), # controls the global body position
'betas': betas.float().to(device),# .to(comp_device), # controls the body shape. Body shape is static
}
body_pose_hand = self.body_model['neutral'](**{k:v for k,v in body_parms.items() if k in ['pose_body', 'betas', 'pose_hand', 'trans', 'root_orient']})
verts = body_pose_hand.v.view(T * B * nq, np, -1, 3)
indices = indices.unsqueeze(1).unsqueeze(2).unsqueeze(3).repeat(1, np, verts.shape[2], verts.shape[3])
vert = torch.gather(verts, 1, indices).view(T * B * nq * np, -1, 3)
verts = verts.view(T * B * nq * np, -1, 3)
loss = self.penetration(vert, verts)
loss = loss.view(T, B, nq, np).mean(dim=[0, 2, 3])
return loss
def forward_backward(self, motion, cond, batch):
t, weights = self.schedule_sampler.sample(self.args.batch_size, device)
t = t.unsqueeze(1).unsqueeze(2).repeat(1, self.args.num_queries, self.args.num_persons).view(-1)
annealing_factor = min(1.0, max(float(self.current_epoch) / (self.args.second_stage), 0)) if self.args.use_annealing else 1
cond['y']['global_level'] = annealing_factor
compute_losses = functools.partial(
self.diffusion.training_losses,
self.ddp_model,
motion,
t,
model_kwargs=cond,
)
pred, gt = compute_losses()
nq = self.args.num_queries
np = self.args.num_persons
pred = pred.squeeze(1).permute(2, 0, 1).contiguous()
gt = gt.squeeze(1).permute(2, 0, 1).contiguous()
T, _, nJ = pred[:, :, :-3].shape
pred = pred.view(T, -1, nq, np, nJ + 3)
gt = gt.view(T, -1, nq, np, nJ + 3)
nJ = nJ // 6
body_rot = pred[:, :, :, :, :-3]
body_rot_gt = gt[:, :, :, :, :-3]
body_trans = pred[:, :, :, :, -3:]
body_trans_gt = gt[:, :, :, :, -3:]
body_rot_angle = matrix_to_axis_angle(rotation_6d_to_matrix(body_rot.view(T, -1, nq, np, nJ, 6))).view(T, -1, nq, np, nJ * 3)
loss_body_rot_past_global = torch.nn.MSELoss(reduction='none')(body_rot[:self.args.past_len], body_rot_gt[:self.args.past_len]).mean(dim=[0, 2, 3, 4])
loss_body_nonrot_past_global = torch.nn.MSELoss(reduction='none')(body_trans[:self.args.past_len], body_trans_gt[:self.args.past_len]).mean(dim=[0, 2, 3, 4])
loss_body_rot_v_past_global = torch.nn.MSELoss(reduction='none')(body_rot[1:self.args.past_len+1]-body_rot[:self.args.past_len], body_rot_gt[1:self.args.past_len+1]-body_rot_gt[1:self.args.past_len+1]).mean(dim=[0, 2, 3, 4]) +\
torch.nn.MSELoss(reduction='none')(body_rot[1:self.args.past_len]-body_rot[:self.args.past_len-1], body_rot[2:self.args.past_len+1]-body_rot[1:self.args.past_len]).mean(dim=[0, 2, 3, 4])
loss_body_nonrot_v_past_global = torch.nn.MSELoss(reduction='none')(body_trans[1:self.args.past_len+1]-body_trans[:self.args.past_len], body_trans_gt[1:self.args.past_len+1]-body_trans_gt[1:self.args.past_len+1]).mean(dim=[0, 2, 3, 4]) +\
torch.nn.MSELoss(reduction='none')(body_trans[1:self.args.past_len]-body_trans[:self.args.past_len-1], body_trans[2:self.args.past_len+1]-body_trans[1:self.args.past_len]).mean(dim=[0, 2, 3, 4])
loss_body_rot_future_global = torch.nn.MSELoss(reduction='none')(body_rot[self.args.past_len:], body_rot_gt[self.args.past_len:]).mean(dim=[0, 3, 4])
loss_body_nonrot_future_global = torch.nn.MSELoss(reduction='none')(body_trans[self.args.past_len:], body_trans_gt[self.args.past_len:]).mean(dim=[0, 3, 4])
loss_body_rot_v_future_global = torch.nn.MSELoss(reduction='none')(body_rot[self.args.past_len:]-body_rot[self.args.past_len-1:-1], body_rot_gt[self.args.past_len:]-body_rot_gt[self.args.past_len:]).mean(dim=[0, 2, 3, 4]) +\
torch.nn.MSELoss(reduction='none')(body_rot[self.args.past_len-1:-2]-body_rot[self.args.past_len:-1], body_rot[self.args.past_len:-1]-body_rot[self.args.past_len+1:]).mean(dim=[0, 2, 3, 4])
loss_body_nonrot_v_future_global = torch.nn.MSELoss(reduction='none')(body_trans[self.args.past_len:]-body_trans[self.args.past_len-1:-1], body_trans_gt[self.args.past_len:]-body_trans_gt[self.args.past_len:]).mean(dim=[0, 2, 3, 4]) +\
torch.nn.MSELoss(reduction='none')(body_trans[self.args.past_len-1:-2]-body_trans[self.args.past_len:-1], body_trans[self.args.past_len:-1]-body_trans[self.args.past_len+1:]).mean(dim=[0, 2, 3, 4])
# idx_q = torch.randint(0, self.args.num_queries, ())
# if idx_q % 2 == 0:
# loss_pene = self.pene_loss(body_rot_angle[self.args.past_len:, :, idx_q:idx_q+1, :, :].contiguous(), body_trans[self.args.past_len:, :, idx_q:idx_q+1, :, :].contiguous(), batch)
# else:
loss_pene = torch.zeros_like(loss_body_rot_past_global).to(device)
cond['y']['global_level'] = 0
compute_losses = functools.partial(
self.diffusion.training_losses,
self.ddp_model,
motion,
t,
model_kwargs=cond,
)
pred_local, gt_local = compute_losses()
pred_local = pred_local.squeeze(1).permute(2, 0, 1).contiguous()
gt_local = gt_local.squeeze(1).permute(2, 0, 1).contiguous()
T, _, nJ = pred_local[:, :, :-3].shape
pred_local = pred_local.view(T, -1, nq, np, nJ + 3)
gt_local = gt_local.view(T, -1, nq, np, nJ + 3)
nJ = nJ // 6
body_rot = pred_local[:, :, :, :, :-3]
body_rot_gt = gt_local[:, :, :, :, :-3]
body_trans = pred_local[:, :, :, :, -3:]
body_trans_gt = gt_local[:, :, :, :, -3:]
body_rot_angle_local = matrix_to_axis_angle(rotation_6d_to_matrix(body_rot.view(T, -1, nq, np, nJ, 6))).view(T, -1, nq, np, nJ * 3)
loss_body_rot_past_local = torch.nn.MSELoss(reduction='none')(body_rot[:self.args.past_len], body_rot_gt[:self.args.past_len]).mean(dim=[0, 4]).mean(dim=1).mean(dim=1)
loss_body_nonrot_past_local = torch.nn.MSELoss(reduction='none')(body_trans[:self.args.past_len], body_trans_gt[:self.args.past_len]).mean(dim=[0, 4]).mean(dim=1).mean(dim=1)
loss_body_rot_v_past_local = torch.nn.MSELoss(reduction='none')(body_rot[1:self.args.past_len+1]-body_rot[:self.args.past_len], body_rot_gt[1:self.args.past_len+1]-body_rot_gt[1:self.args.past_len+1]).mean(dim=[0, 2, 3, 4]) +\
torch.nn.MSELoss(reduction='none')(body_rot[1:self.args.past_len]-body_rot[:self.args.past_len-1], body_rot[2:self.args.past_len+1]-body_rot[1:self.args.past_len]).mean(dim=[0, 2, 3, 4])
loss_body_nonrot_v_past_local = torch.nn.MSELoss(reduction='none')(body_trans[1:self.args.past_len+1]-body_trans[:self.args.past_len], body_trans_gt[1:self.args.past_len+1]-body_trans_gt[1:self.args.past_len+1]).mean(dim=[0, 2, 3, 4]) +\
torch.nn.MSELoss(reduction='none')(body_trans[1:self.args.past_len]-body_trans[:self.args.past_len-1], body_trans[2:self.args.past_len+1]-body_trans[1:self.args.past_len]).mean(dim=[0, 2, 3, 4])
loss_body_rot_future_local = torch.nn.MSELoss(reduction='none')(body_rot[self.args.past_len:], body_rot_gt[self.args.past_len:]).mean(dim=[0, 4])
loss_body_nonrot_future_local = torch.nn.MSELoss(reduction='none')(body_trans[self.args.past_len:], body_trans_gt[self.args.past_len:]).mean(dim=[0, 4])
loss_body_rot_v_future_local = torch.nn.MSELoss(reduction='none')(body_rot[self.args.past_len:]-body_rot[self.args.past_len-1:-1], body_rot_gt[self.args.past_len:]-body_rot_gt[self.args.past_len:]).mean(dim=[0, 2, 3, 4]) +\
torch.nn.MSELoss(reduction='none')(body_rot[self.args.past_len-1:-2]-body_rot[self.args.past_len:-1], body_rot[self.args.past_len:-1]-body_rot[self.args.past_len+1:]).mean(dim=[0, 2, 3, 4])
loss_body_nonrot_v_future_local = torch.nn.MSELoss(reduction='none')(body_trans[self.args.past_len:]-body_trans[self.args.past_len-1:-1], body_trans_gt[self.args.past_len:]-body_trans_gt[self.args.past_len:]).mean(dim=[0, 2, 3, 4]) +\
torch.nn.MSELoss(reduction='none')(body_trans[self.args.past_len-1:-2]-body_trans[self.args.past_len:-1], body_trans[self.args.past_len:-1]-body_trans[self.args.past_len+1:]).mean(dim=[0, 2, 3, 4])
if self.args.num_queries == 1:
loss_div_rot = torch.zeros_like(loss_body_rot_past_local).to(device)
loss_div_trans = torch.zeros_like(loss_body_rot_past_local).to(device)
else:
mask = torch.tril(torch.ones([nq, nq], device=device)) == 0
body_rot_view = body_rot[self.args.past_len:].permute(1, 3, 2, 0, 4).contiguous().view(-1, nq, self.args.future_len * nJ * 6)
body_trans_view = body_trans[self.args.past_len:].permute(1, 3, 2, 0, 4).contiguous().view(-1, nq, self.args.future_len * 3)
pdist_rot = torch.cdist(body_rot_view, body_rot_view, p=1)[:, mask]
pdist_trans = torch.cdist(body_trans_view, body_trans_view, p=1)[:, mask]
loss_div_rot = (-pdist_rot / 20000).exp().mean(dim=-1).view(-1, np).mean(dim=-1)
loss_div_trans = (-pdist_trans / 800).exp().mean(dim=-1).view(-1, np).mean(dim=-1)
pred_view = body_rot_angle[self.args.past_len:, :, :, :, 3:66].contiguous().view(-1, 63)
amass_body_poZ = self.vposer.encode(pred_view).mean
loss_prior_global = amass_body_poZ.pow(2).sum(dim=1).view(self.args.future_len, -1, nq, np).mean(dim=[0, 2, 3])
pred_view = body_rot_angle_local[self.args.past_len:, :, :, :, 3:66].contiguous().view(-1, 63)
amass_body_poZ = self.vposer.encode(pred_view).mean
loss_prior_local = amass_body_poZ.pow(2).sum(dim=1).view(self.args.future_len, -1, nq, np).mean(dim=[0, 2, 3])
loss_dict = dict()
weighted_loss_dict = dict()
body_rot_future=loss_body_rot_future_global * self.args.weight_smplx_rot
body_nonrot_future=loss_body_nonrot_future_global * self.args.weight_smplx_nonrot
global_future = body_rot_future + body_nonrot_future
body_rot_future=loss_body_rot_future_local * self.args.weight_smplx_rot
body_nonrot_future=loss_body_nonrot_future_local * self.args.weight_smplx_nonrot
local_future = body_rot_future + body_nonrot_future
if torch.rand(()) < 0.9 * annealing_factor:
future = batch['global'] * global_future.min(dim=1)[0] + (1 - batch['global']) * local_future.min(dim=1)[0].mean(dim=-1) * annealing_factor
else:
idx_q = torch.randint(0, self.args.num_queries, ())
future = batch['global'] * global_future[:, idx_q] + (1 - batch['global']) * local_future[:, idx_q].mean(dim=1) * annealing_factor
loss_dict.update(dict(
body_rot_past = batch['global'] * loss_body_rot_past_global + (1 - batch['global']) * loss_body_rot_past_local * annealing_factor,
body_nonrot_past = batch['global'] * loss_body_nonrot_past_global + (1 - batch['global']) * loss_body_nonrot_past_local * annealing_factor,
body_rot_v_past = batch['global'] * loss_body_rot_v_past_global + (1 - batch['global']) * loss_body_rot_v_past_local * annealing_factor,
body_nonrot_v_past = batch['global'] * loss_body_nonrot_v_past_global + (1 - batch['global']) * loss_body_nonrot_v_past_local * annealing_factor,
body_rot_v_future = batch['global'] * loss_body_rot_v_future_global + (1 - batch['global']) * loss_body_rot_v_future_local * annealing_factor,
body_nonrot_v_future = batch['global'] * loss_body_nonrot_v_future_global + (1 - batch['global']) * loss_body_nonrot_v_future_local * annealing_factor,
future = future,
div_rot=loss_div_rot,
div_trans=loss_div_trans,
prior_global=loss_prior_global,
prior_local=loss_prior_local * annealing_factor,
penetration=loss_pene,
))
weighted_loss_dict.update(dict(
body_rot_past=loss_dict['body_rot_past'] * self.args.weight_smplx_rot * self.args.weight_past,
body_nonrot_past=loss_dict['body_nonrot_past'] * self.args.weight_smplx_nonrot * self.args.weight_past,
body_rot_v_past=loss_dict['body_rot_v_past'] * self.args.weight_v * self.args.weight_smplx_rot * self.args.weight_past,
body_nonrot_v_past=loss_dict['body_nonrot_v_past'] * self.args.weight_v * self.args.weight_smplx_nonrot * self.args.weight_past,
body_rot_v_future=loss_dict['body_rot_v_future'] * self.args.weight_v * self.args.weight_smplx_rot,
body_nonrot_v_future=loss_dict['body_nonrot_v_future'] * self.args.weight_v * self.args.weight_smplx_nonrot,
future = future,
div_rot=loss_div_rot * self.args.weight_div * max(annealing_factor ** 2, 0),
div_trans=loss_div_trans * self.args.weight_div * max(annealing_factor ** 2, 0),
prior_global=loss_prior_global * self.args.weight_prior,
prior_local=loss_prior_local * self.args.weight_prior,
penetration=loss_pene * self.args.weight_penetration * max(annealing_factor ** 2, 0),
))
loss = sum(list(weighted_loss_dict.values()))
if isinstance(self.schedule_sampler, LossAwareSampler):
self.schedule_sampler.update_with_local_losses(
t, loss.detach()
)
loss = (loss * weights).mean()
self.log_loss_dict(
self.diffusion, t, weighted_loss_dict, loss
)
return loss
def log_loss_dict(self, diffusion, ts, losses, loss):
self.log('train_loss', loss, prog_bar=False)
for key, values in losses.items():
self.log(key, values.mean().item(), prog_bar=True)
# Log the quantiles (four quartiles, in particular).
for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()):
quartile = int(4 * sub_t / diffusion.num_timesteps)
self.log(f"{key}_q{quartile}", sub_loss)
def configure_optimizers(self):
optimizer = torch.optim.AdamW(params=list(self.model.parameters()),
lr=self.args.lr,
weight_decay=self.args.l2_norm)
lr_scheduler = ReduceLROnPlateau(optimizer, patience=5, factor=0.9, verbose=True)
return ({'optimizer': optimizer,
# 'lr_scheduler': {
# 'scheduler': lr_scheduler,
# 'reduce_on_plateau': True,
# # val_checkpoint_on is val_loss passed in as checkpoint_on
# 'monitor': 'joint'
# }
})
def calc_val_loss(self, pred, gt, batch):
nq = self.args.num_queries
np = self.args.num_persons
T, _, nJ = pred[:, :, :-3].shape
pred = pred.view(T, -1, nq, np, nJ + 3)
gt = gt.view(T, -1, nq, np, nJ + 3)
nJ = nJ // 6
body_rot = pred[:, :, :, :, :-3]
body_rot_gt = gt[:, :, :, :, :-3]
body_trans = pred[:, :, :, :, -3:]
body_trans_gt = gt[:, :, :, :, -3:]
loss_body_rot_future_global = torch.nn.MSELoss(reduction='none')(body_rot[self.args.past_len:], body_rot_gt[self.args.past_len:]).mean(dim=[0, 3, 4]).min(dim=1)[0].mean()
loss_body_nonrot_future_global = torch.nn.MSELoss(reduction='none')(body_trans[self.args.past_len:], body_trans_gt[self.args.past_len:]).mean(dim=[0, 3, 4]).min(dim=1)[0].mean()
loss_body_rot_v_future_global = torch.nn.MSELoss(reduction='none')(body_rot[self.args.past_len:]-body_rot[self.args.past_len-1:-1], body_rot_gt[self.args.past_len:]-body_rot_gt[self.args.past_len-1:-1]).mean(dim=[0, 3, 4]).min(dim=1)[0].mean()
loss_body_nonrot_v_future_global = torch.nn.MSELoss(reduction='none')(body_trans[self.args.past_len:]-body_trans[self.args.past_len-1:-1], body_trans_gt[self.args.past_len:]-body_trans_gt[self.args.past_len-1:-1]).mean(dim=[0, 3, 4]).min(dim=1)[0].mean()
body_rot_angle = matrix_to_axis_angle(rotation_6d_to_matrix(body_rot.view(T, -1, nq, np, nJ, 6))).view(T, -1, nq, np, nJ * 3)
body_rot_gt_angle = matrix_to_axis_angle(rotation_6d_to_matrix(body_rot_gt.view(T, -1, nq, np, nJ, 6))).view(T, -1, nq, np, nJ * 3)
pred_ = torch.cat([body_rot_angle, body_trans], dim=4)
gt_ = torch.cat([body_rot_gt_angle, body_trans_gt], dim=4)
pred_view = body_rot_angle[self.args.past_len:, :, :, :, 3:66].contiguous().view(-1, 63)
amass_body_poZ = self.vposer.encode(pred_view).mean
loss_prior_global = amass_body_poZ.pow(2).sum(dim=1).view(self.args.future_len, -1, nq, np).mean(dim=[0, 2, 3]).mean()
if self.args.num_queries == 1:
loss_div_rot = torch.zeros_like(loss_body_rot_future_global).to(device)
loss_div_trans = torch.zeros_like(loss_body_rot_future_global).to(device)
else:
mask = torch.tril(torch.ones([nq, nq], device=device)) == 0
body_rot_view = body_rot[self.args.past_len:].permute(1, 3, 2, 0, 4).contiguous().view(-1, nq, self.args.future_len * nJ * 6)
body_trans_view = body_trans[self.args.past_len:].permute(1, 3, 2, 0, 4).contiguous().view(-1, nq, self.args.future_len * 3)
pdist_rot = torch.cdist(body_rot_view, body_rot_view, p=1)[:, mask]
pdist_trans = torch.cdist(body_trans_view, body_trans_view, p=1)[:, mask]
loss_div_rot = pdist_rot.mean()
loss_div_trans = pdist_trans.mean()
# idx_q = torch.randint(0, self.args.num_queries, ())
# loss_pene = self.pene_loss(body_rot_angle[self.args.past_len:, :, idx_q:idx_q+1, :, :].contiguous(), body_trans[self.args.past_len:, :, idx_q:idx_q+1, :, :].contiguous(), batch).mean()
loss_dict = dict()
weighted_loss_dict = dict()
loss_dict.update(dict(
body_rot_future = loss_body_rot_future_global,
body_nonrot_future = loss_body_nonrot_future_global,
body_rot_v_future = loss_body_rot_v_future_global,
body_nonrot_v_future = loss_body_nonrot_v_future_global,
div_rot=loss_div_rot,
div_trans=loss_div_trans,
prior_global=loss_prior_global,
# penetration=loss_pene,
))
weighted_loss_dict.update(dict(
body_rot_future=loss_dict['body_rot_future'] * self.args.weight_smplx_rot,
body_nonrot_future=loss_dict['body_nonrot_future'] * self.args.weight_smplx_nonrot,
body_rot_v_future=loss_dict['body_rot_v_future'] * self.args.weight_v * self.args.weight_smplx_rot,
body_nonrot_v_future=loss_dict['body_nonrot_v_future'] * self.args.weight_v * self.args.weight_smplx_nonrot,
div_rot=loss_div_rot * self.args.weight_div,
div_trans=loss_div_trans * self.args.weight_div,
prior_global=loss_prior_global * self.args.weight_prior,
# penetration=loss_pene * self.args.weight_penetration,
))
loss = torch.stack(list(weighted_loss_dict.values())).sum()
return loss, loss_dict, weighted_loss_dict, pred_, gt_
def _common_step(self, batch, batch_idx, mode):
embedding, gt = self.model._get_embeddings(batch)
# [t, b, n] -> [bs, njoints, nfeats, nframes]
gt = gt.permute(1, 2, 0).unsqueeze(1).contiguous()
model_kwargs = {'y': {'cond': embedding}}
model_kwargs['y']['inpainted_motion'] = gt
model_kwargs['y']['inpainting_mask'] = torch.ones_like(gt, dtype=torch.bool,
device=device) # True means use gt motion
model_kwargs['y']['inpainting_mask'][:, :, :, self.args.past_len:] = False # do inpainting in those frames
if mode == 'train':
loss = self.forward_backward(gt, model_kwargs, batch)
return loss
elif mode == 'valid' or mode == 'test':
model_kwargs['y']['global_level'] = 1
sample_fn = self.diffusion.p_sample_loop
sample = sample_fn(self.model, gt.shape, clip_denoised=False, model_kwargs=model_kwargs)
pred = sample.squeeze(1).permute(2, 0, 1).contiguous()
gt = gt.squeeze(1).permute(2, 0, 1).contiguous()
loss, loss_dict, weighted_loss_dict, pred, gt = self.calc_val_loss(pred, gt, batch)
render_interval = 100
if (batch_idx % render_interval == 0) and (((self.current_epoch % self.args.render_epoch) == self.args.render_epoch - 1) or self.args.debug):
nq = self.args.num_queries
for i in range(nq+1):
if i == nq:
self.visualize(gt[:, 0, 0, :, :], batch, batch_idx, 'gt', i)
else:
self.visualize(pred[:, 0, i, :, :], batch, batch_idx, 'pred', i)
return loss, loss_dict, weighted_loss_dict
def visualize(self, pred, batch, batch_idx, mode, idx):
with torch.no_grad():
pred = pred.detach().clone()
betas = batch['betas'][0].unsqueeze(1).repeat(1, pred.shape[0], 1) # np T D
trans = batch['trans'][0, :, 0:1, :] # MxTx3
gender = batch['gender'] # np
# visualize
export_file = Path.joinpath(save_dir, 'render')
export_file.mkdir(exist_ok=True, parents=True)
# mask_video_paths = [join(seq_save_path, f'mask_k{x}.mp4') for x in reader.seq_info.kids]
rend_video_path = os.path.join(export_file, '{}_{}_{}_{}'.format(mode, self.current_epoch, batch_idx, idx))
verts = []
for i in range(betas.shape[0]):
bm = self.body_model[gender[i][0]]
body_parms = {
'root_orient': pred[:, i, :3].float().to(device), # controls the global root orientation
'pose_body': pred[:, i, 3:66].float().to(device), # controls the body
'pose_hand': pred[:, i, 66:-3].float().to(device), # controls the finger articulation
'trans': pred[:, i, -3:].float().to(device) + trans[i].float().to(device), # controls the global body position
'betas': betas[i].float().to(device),# .to(comp_device), # controls the body shape. Body shape is static
}
body_pose_hand = bm(**{k:v for k,v in body_parms.items() if k in ['pose_body', 'betas', 'pose_hand', 'trans', 'root_orient']})
verts.append(body_pose_hand.v.unsqueeze(0))
# print(np.argmin(jtr[:, :, 1], axis=1))
verts = torch.cat(verts, dim=0).cpu().numpy()
m = visualize_body_multi(verts, self.faces, past_len=self.args.past_len, save_path=rend_video_path, sample_rate=1)
def training_step(self, batch, batch_idx):
loss = self._common_step(batch, batch_idx, 'train')
return loss
def validation_step(self, batch, batch_idx):
with torch.no_grad():
loss, loss_dict, weighted_loss_dict = self._common_step(batch, batch_idx, 'valid')
for key in loss_dict:
self.log('val_' + key, loss_dict[key], prog_bar=False)
self.log('val_loss', loss)
def test_step(self, batch, batch_idx):
with torch.no_grad():
loss, loss_dict, weighted_loss_dict = self._common_step(batch, batch_idx, 'test')
for key in loss_dict:
self.log('val_' + key, loss_dict[key], prog_bar=False)
self.log('val_loss', loss)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if __name__ == '__main__':
if torch.cuda.is_available():
print(torch.cuda.get_device_name(0))
# args
parser = ArgumentParser()
parser.add_argument("--mode", type=str, default='train')
parser.add_argument("--sample_rate", type=int, default=4)
# transformer
parser.add_argument("--latent_dim", type=int, default=256)
parser.add_argument("--embedding_dim", type=int, default=256)
parser.add_argument("--num_heads", type=int, default=4)
parser.add_argument("--ff_size", type=int, default=1024)
parser.add_argument("--activation", type=str, default='gelu')
parser.add_argument("--dropout", type=float, default=0.1)
parser.add_argument("--num_layers", type=int, default=8)
parser.add_argument("--latent_usage", type=str, default='memory')
parser.add_argument("--lr", type=float, default=3e-4)
parser.add_argument("--l2_norm", type=float, default=0)
parser.add_argument("--robust_kl", type=int, default=1)
parser.add_argument("--weight_template", type=float, default=0.1)
parser.add_argument("--weight_kl", type=float, default=1e-2)
parser.add_argument("--weight_penetration", type=float, default=0.01) #10
parser.add_argument("--weight_smplx_rot", type=float, default=1)
parser.add_argument("--weight_smplx_nonrot", type=float, default=0.2)
parser.add_argument("--weight_past", type=float, default=1)
parser.add_argument("--weight_jtr", type=float, default=0.1)
parser.add_argument("--weight_jtr_v", type=float, default=500)
parser.add_argument("--weight_v", type=float, default=0.2)
parser.add_argument("--weight_div", type=float, default=0.0001)
parser.add_argument("--weight_prior", type=float, default=0)
parser.add_argument("--use_contact", type=int, default=0)
parser.add_argument("--use_annealing", type=int, default=1)
parser.add_argument("--num_queries", type=int, default=10)
parser.add_argument("--num_persons", type=int, default=3)
# dataset
parser.add_argument("--past_len", type=int, default=10)
parser.add_argument("--future_len", type=int, default=25)
# train
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument("--profiler", type=str, default='simple', help='simple or advanced')
parser.add_argument("--gpus", type=int, default=1)
parser.add_argument("--max_epochs", type=int, default=1000)
parser.add_argument("--second_stage", type=int, default=100,
help="annealing some loss weights in early epochs before this num")
parser.add_argument("--expr_name", type=str, default=datetime.now().strftime("%H:%M:%S.%f"))
parser.add_argument("--render_epoch", type=int, default=1)
parser.add_argument("--resume_checkpoint", type=str, default=None)
parser.add_argument("--debug", type=int, default=0)
# diffusion
parser.add_argument("--noise_schedule", default='cosine', choices=['linear', 'cosine'], type=str,
help="Noise schedule type")
parser.add_argument("--sigma_small", default=True, type=bool, help="Use smaller sigma values.")
parser.add_argument("--diffusion_steps", type=int, default=1000)
parser.add_argument("--cond_mask_prob", default=0, type=float,
help="The probability of masking the condition during training."
" For classifier-free guidance learning.")
args = parser.parse_args()
# make demterministic
pl.seed_everything(233, workers=True)
torch.autograd.set_detect_anomaly(True)
# rendering and results
results_folder = "./results"
os.makedirs(results_folder, exist_ok=True)
train_dataset = Dataset(mode = 'train', past_len=args.past_len, future_len=args.future_len, sample_rate=args.sample_rate)
test_dataset = Dataset(mode = 'test', past_len=args.past_len, future_len=args.future_len, sample_rate=args.sample_rate)
args.smpl_dim = train_dataset.pose_dim * 2
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True,
drop_last=True, pin_memory=False) #pin_memory cause warning in pytorch 1.9.0
val_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True,
drop_last=True, pin_memory=False)
print('dataset loaded')
if args.resume_checkpoint is not None:
print('resume training')
model = LitInteraction.load_from_checkpoint(args.resume_checkpoint, args=args)
else:
print('start training from scratch')
model = LitInteraction(args)
if args.mode == "train":
# callback
tb_logger = pl_loggers.TensorBoardLogger(str(results_folder + '/interaction'), name=args.expr_name)
save_dir = Path(tb_logger.log_dir) # for this version
print(save_dir)
checkpoint_callback = pl.callbacks.ModelCheckpoint(dirpath=str(save_dir / 'checkpoints'),
monitor="val_loss",
save_weights_only=True, save_last=True)
print(checkpoint_callback.dirpath)
early_stop_callback = pl.callbacks.EarlyStopping(monitor="val_loss", min_delta=0.00, patience=1000, verbose=False,
mode="min")
profiler = SimpleProfiler() if args.profiler == 'simple' else AdvancedProfiler(output_filename='profiling.txt')
# trainer
trainer = pl.Trainer.from_argparse_args(args,
logger=tb_logger,
profiler=profiler,
# progress_bar_refresh_rate=1,
callbacks=[checkpoint_callback, early_stop_callback],
gradient_clip_val=0.01,
check_val_every_n_epoch=250,
)
trainer.fit(model, train_loader, val_loader)
elif args.mode == "test" and args.resume_checkpoint is not None:
# callback
tb_logger = pl_loggers.TensorBoardLogger(str(results_folder + '/sample'), name=args.expr_name)
save_dir = Path(tb_logger.log_dir) # for this version
print(save_dir)
checkpoint_callback = pl.callbacks.ModelCheckpoint(dirpath=str(save_dir / 'checkpoints'),
monitor="val_loss",
save_weights_only=True, save_last=True)
print(checkpoint_callback.dirpath)
early_stop_callback = pl.callbacks.EarlyStopping(monitor="val_loss", min_delta=0.00, patience=1000, verbose=False,
mode="min")
profiler = SimpleProfiler() if args.profiler == 'simple' else AdvancedProfiler(output_filename='profiling.txt')
# trainer
trainer = pl.Trainer.from_argparse_args(args,
logger=tb_logger,
profiler=profiler,
# progress_bar_refresh_rate=1,
callbacks=[checkpoint_callback, early_stop_callback],
)
trainer.test(model, val_loader)