-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_get.py
386 lines (333 loc) · 18.6 KB
/
model_get.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import os
import numpy as np
import tensorflow as tf
from keras_layer_normalization import LayerNormalization
from keras_multi_head import MultiHeadAttention
import tensorflow.keras.layers
from tensorflow.keras.models import model_from_json, load_model
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Embedding,MaxPool2D,Conv1D,Conv2D, Bidirectional, LSTM, Activation, Concatenate, AveragePooling1D, MaxPool1D, BatchNormalization, Attention, GlobalAveragePooling1D, GlobalMaxPool1D
from tensorflow.keras.initializers import VarianceScaling
from tensorflow.keras.utils import to_categorical
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score, roc_auc_score, average_precision_score
from tensorflow.keras.initializers import glorot_normal
from keras_pos_embd import TrigPosEmbedding
import time
import shutil
from tensorflow.python.keras.layers.core import Reshape
from tensorflow.python.keras.models import *
from tensorflow.python.keras.layers import multiply
from tensorflow.python.keras.layers.core import Dense, Dropout, Flatten
VOCAB_SIZE = 16
EMBED_SIZE = 90
MAXLEN = 23
seed = 123
def conv2d_bn(x,
filters,
kernel_size,
strides=1,
padding='same',
activation='relu',
use_bias=True,
name=None, trainable=True):
x = Conv2D(filters,
kernel_size,
strides=strides,
padding=padding,
use_bias=use_bias,
kernel_initializer=glorot_normal(seed=seed),
name=name, trainable=trainable)(x)
if activation is not None:
ac_name = None if name is None else name + '_ac'
x = Activation(activation, name=ac_name)(x)
return x
class PositionalEncoding(tf.keras.layers.Layer):
def __init__(self, sequence_len=None, embedding_dim=None,**kwargs):
super(PositionalEncoding, self).__init__()
self.sequence_len = sequence_len
self.embedding_dim = embedding_dim
def call(self, x):
position_embedding = np.array([
[pos / np.power(10000, 2. * i / self.embedding_dim) for i in range(self.embedding_dim)]
for pos in range(self.sequence_len)])
position_embedding[:, 0::2] = np.sin(position_embedding[:, 0::2]) # dim 2i
position_embedding[:, 1::2] = np.cos(position_embedding[:, 1::2]) # dim 2i+1
position_embedding = tf.cast(position_embedding, dtype=tf.float32)
return position_embedding+x
def get_config(self):
config = super().get_config().copy()
config.update({
'sequence_len' : self.sequence_len,
'embedding_dim' : self.embedding_dim,
})
return config
def transformIO(xtrain, xtest, ytrain, ytest,xval,yval,seq_len , coding_dim, num_classes):
xtrain = xtrain.reshape(xtrain.shape[0], 1,seq_len, coding_dim)
xtest = xtest.reshape(xtest.shape[0],1,seq_len, coding_dim)
xval = xval.reshape(xval.shape[0], 1, seq_len, coding_dim)
input_shape = (1,seq_len, coding_dim)
xtrain = xtrain.astype('float32')
xtest = xtest.astype('float32')
xval = xval.astype('float32')
print('xtrain shape:', xtrain.shape)
print(xtrain.shape[0], 'train samples')
print(xtest.shape[0], 'test samples')
print(xval.shape[0], 'val samples')
ytrain = to_categorical(ytrain, num_classes)
ytest = to_categorical(ytest, num_classes)
yval = to_categorical(yval, num_classes)
return xtrain, xtest, ytrain, ytest,xval,yval, input_shape
def CRISPR_Net_transformIO(xtrain, xtest, ytrain, ytest,xval,yval,seq_len , coding_dim, num_classes):
xtrain = xtrain.reshape(xtrain.shape[0], 1,seq_len, coding_dim)
xtest = xtest.reshape(xtest.shape[0],1,seq_len, coding_dim)
xval = xval.reshape(xval.shape[0], 1, seq_len, coding_dim)
input_shape = (1,seq_len, coding_dim)
xtrain = xtrain.astype('float32')
xtest = xtest.astype('float32')
xval = xval.astype('float32')
print('xtrain shape:', xtrain.shape)
print(xtrain.shape[0], 'train samples')
print(xtest.shape[0], 'test samples')
print(xval.shape[0], 'val samples')
ytrain = to_categorical(ytrain, num_classes)
ytest = to_categorical(ytest, num_classes)
yval = to_categorical(yval, num_classes)
return xtrain, xtest, ytrain, ytest,xval,yval, input_shape
def cnn_std_transformIO(xtrain, xtest, ytrain, ytest,xval,yval,seq_len , coding_dim, num_classes):
xtrain = xtrain.reshape(xtrain.shape[0], 1,seq_len, coding_dim)
xtest = xtest.reshape(xtest.shape[0],1,seq_len, coding_dim)
xval = xval.reshape(xval.shape[0], 1, seq_len, coding_dim)
input_shape = (1,seq_len, coding_dim)
xtrain = xtrain.astype('float32')
xtest = xtest.astype('float32')
xval = xval.astype('float32')
print('xtrain shape:', xtrain.shape)
print(xtrain.shape[0], 'train samples')
print(xtest.shape[0], 'test samples')
print(xval.shape[0], 'xval samples')
ytrain = to_categorical(ytrain, num_classes)
ytest = to_categorical(ytest, num_classes)
yval = to_categorical(yval, num_classes)
return xtrain, xtest, ytrain, ytest,xval,yval, input_shape
def offt_transformIO(xtrain, xtest, ytrain, ytest ,xval,yval, num_classes):
xtrain = xtrain.astype('float32')
xtest = xtest.astype('float32')
xval = xval.astype('float32')
print('xtrain shape:', xtrain.shape)
print(xtrain.shape[0], 'train samples')
print(xtest.shape[0], 'test samples')
print(xval.shape[0], 'val samples')
ytrain = to_categorical(ytrain, num_classes)
ytest = to_categorical(ytest, num_classes)
yval = to_categorical(yval, num_classes)
return xtrain, xtest, ytrain, ytest,xval,yval
def f1_metric(y_true, y_pred):
true_positives = tf.keras.backend.sum(tf.keras.backend.round(tf.keras.backend.clip(y_true * y_pred, 0, 1)))
possible_positives = tf.keras.backend.sum(tf.keras.backend.round(tf.keras.backend.clip(y_true, 0, 1)))
predicted_positives = tf.keras.backend.sum(tf.keras.backend.round(tf.keras.backend.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + tf.keras.backend.epsilon())
recall = true_positives / (possible_positives + tf.keras.backend.epsilon())
f1_val = 2 * (precision * recall) / (precision + recall + tf.keras.backend.epsilon())
return f1_val
def CnnCrispr(embedding_weights,test_ds,resampled_steps_per_epoch,resampled_ds,xtrain, ytrain, xtest, ytest, num_classes, batch_size, epochs, callbacks, saved_prefix, retrain=False):
VOCAB_SIZE = 16
EMBED_SIZE = 100
maxlen = 23
if retrain or not os.path.exists('saved_model/'+'{}CnnCrispr.h5'.format(saved_prefix)):
input = Input(shape=(23,))
embedding = Embedding(VOCAB_SIZE, EMBED_SIZE, input_length=maxlen,
weights=[embedding_weights],
trainable=True)(input)
bi_lstm = Bidirectional(LSTM(40, return_sequences=True))(embedding)
bi_lstm_relu = Activation('relu')(bi_lstm)
conv1 = Conv1D(10, (5))(bi_lstm_relu)
conv1_relu = Activation('relu')(conv1)
conv1_batch = BatchNormalization()(conv1_relu)
conv2 = Conv1D(20, (5))(conv1_batch)
conv2_relu = Activation('relu')(conv2)
conv2_batch = BatchNormalization()(conv2_relu)
conv3 = Conv1D(40, (5))(conv2_batch)
conv3_relu = Activation('relu')(conv3)
conv3_batch = BatchNormalization()(conv3_relu)
conv4 = Conv1D(80, (5))(conv3_batch)
conv4_relu = Activation('relu')(conv4)
conv4_batch = BatchNormalization()(conv4_relu)
conv5 = Conv1D(100, (5))(conv4_batch)
conv5_relu = Activation('relu')(conv5)
conv5_batch = BatchNormalization()(conv5_relu)
flat = Flatten()(conv5_batch)
drop = Dropout(0.3)(flat)
dense = Dense(20)(drop)
dense_relu = Activation('relu')(dense)
prediction = Dense(2, activation='softmax', name='main_output')(dense_relu)
model = Model(input, prediction)
model.compile(tf.keras.optimizers.Adam(learning_rate=0.001), loss=tf.keras.losses.CategoricalCrossentropy(), metrics=['accuracy', f1_metric])
history_model = model.fit(
resampled_ds,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=test_ds,
steps_per_epoch=resampled_steps_per_epoch,
callbacks=callbacks
)
model.save('saved_model/'+'{}CnnCrispr.h5'.format(saved_prefix))
else:
model = load_model('saved_model/'+'{}CnnCrispr.h5'.format(saved_prefix))
return model
def cnn_std(test_ds,resampled_steps_per_epoch,resampled_ds,xtrain, ytrain, xtest, ytest, num_classes, batch_size, epochs, callbacks, saved_prefix, retrain=False):
if retrain or not os.path.exists('saved_model/'+'{}cnn_std.h5'.format(saved_prefix)):
input = Input(shape=(1, 23, 4))
conv_1 = Conv2D(10, (1, 1), padding='same', activation='relu')(input)
conv_2 = Conv2D(10, (1, 2), padding='same', activation='relu')(input)
conv_3 = Conv2D(10, (1, 3), padding='same', activation='relu')(input)
conv_4 = Conv2D(10, (1, 5), padding='same', activation='relu')(input)
conv_output = tensorflow.keras.layers.concatenate([conv_1, conv_2, conv_3, conv_4])
bn_output = BatchNormalization()(conv_output)
pooling_output = MaxPool2D(pool_size=(1, 5), strides=None, padding='valid')(bn_output)
flatten_output = Flatten()(pooling_output)
x = Dense(100, activation='relu')(flatten_output)
x = Dense(23, activation='relu')(x)
x = Dropout(rate=0.15)(x)
output = Dense(2, activation="softmax")(x)
model = Model(inputs=[input], outputs=[output])
model.compile(tf.keras.optimizers.Adam(learning_rate=0.001), loss=tf.keras.losses.BinaryCrossentropy(),
metrics=['accuracy', f1_metric])
history_model = model.fit(
resampled_ds,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=test_ds,
steps_per_epoch=resampled_steps_per_epoch,
callbacks=callbacks
)
model.save('saved_model/'+'{}cnn_std.h5'.format(saved_prefix))
else:
model = load_model('saved_model/'+'{}cnn_std.h5'.format(saved_prefix))
return model
def crispr_ip(test_ds,resampled_steps_per_epoch,resampled_ds,xtrain, ytrain, xtest, ytest, input_shape, num_classes, batch_size, epochs, callbacks, saved_prefix, retrain=False):
if retrain or not os.path.exists('saved_model/'+'{}crispr_ip.h5'.format(saved_prefix)):
initializer = VarianceScaling(mode='fan_avg', distribution='uniform')
input_value = Input(shape=input_shape)
conv_1_output = Conv2D(60, (1, input_shape[-1]), padding='valid', data_format='channels_first',
kernel_initializer=initializer)(input_value)
conv_1_output_reshape = Reshape(tuple([x for x in conv_1_output.shape.as_list() if x != 1 and x is not None]))(
conv_1_output)
conv_1_output_reshape2 = tf.transpose(conv_1_output_reshape, perm=[0, 2, 1])
conv_1_output_reshape_average = AveragePooling1D(data_format='channels_first')(conv_1_output_reshape2)
conv_1_output_reshape_max = MaxPool1D(data_format='channels_first')(conv_1_output_reshape2)
bidirectional_1_output = Bidirectional(
LSTM(30, return_sequences=True, dropout=0.25, kernel_initializer=initializer))(
Concatenate(axis=-1)([conv_1_output_reshape_average, conv_1_output_reshape_max]))
attention_1_output = Attention()([bidirectional_1_output, bidirectional_1_output])
average_1_output = GlobalAveragePooling1D(data_format='channels_last')(attention_1_output)
max_1_output = GlobalMaxPool1D(data_format='channels_last')(attention_1_output)
concat_output = Concatenate(axis=-1)([average_1_output, max_1_output])
flatten_output = Flatten()(concat_output)
linear_1_output = BatchNormalization()(
Dense(200, activation='relu', kernel_initializer=initializer)(flatten_output))
linear_2_output = Dense(100, activation='relu', kernel_initializer=initializer)(linear_1_output)
linear_2_output_dropout = Dropout(0.9)(linear_2_output)
linear_3_output = Dense(num_classes, activation='softmax', kernel_initializer=initializer)(
linear_2_output_dropout)
model = Model(input_value, linear_3_output)
model.compile(tf.keras.optimizers.Adam(learning_rate=0.001), loss=tf.keras.losses.CategoricalCrossentropy(), metrics=['accuracy', f1_metric])
history_model = model.fit(
resampled_ds,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=test_ds,
steps_per_epoch=resampled_steps_per_epoch,
callbacks=callbacks
)
model.save('saved_model/'+'{}crispr_ip.h5'.format(saved_prefix))
else:
model = load_model('saved_model/'+'{}crispr_ip.h5'.format(saved_prefix))
return model
def CRISPR_Net_model(test_ds,resampled_steps_per_epoch,resampled_ds,xtrain, ytrain, xtest, ytest, input_shape, num_classes, batch_size, epochs, callbacks, saved_prefix, retrain=False):
roc_auc = 0
pr_auc = 0
if retrain or not os.path.exists('saved_model/'+'{}CRISPR_Net.h5'.format(saved_prefix)):
inputs = Input(shape=(1, 23, 7), name='main_input')
branch_0 = conv2d_bn(inputs, 10, (1, 1))
branch_1 = conv2d_bn(inputs, 10, (1, 2))
branch_2 = conv2d_bn(inputs, 10, (1, 3))
branch_3 = conv2d_bn(inputs, 10, (1, 5))
branches = [inputs, branch_0, branch_1, branch_2, branch_3]
mixed = Concatenate(axis=-1)(branches)
mixed = Reshape((23, 47))(mixed)
blstm_out = Bidirectional(LSTM(15, kernel_initializer=glorot_normal(seed=seed),return_sequences=True, input_shape=(23, 46), name="LSTM_out"))(mixed)
blstm_out = Flatten()(blstm_out)
x = Dense(80, kernel_initializer=glorot_normal(seed=seed),activation='relu')(blstm_out)
x = Dense(20, kernel_initializer=glorot_normal(seed=seed),activation='relu')(x)
x = Dropout(0.35,seed=seed)(x)
prediction = Dense(2,kernel_initializer=glorot_normal(seed=seed), activation='softmax', name='main_output')(x)
model = Model(inputs, prediction)
model.compile(tf.keras.optimizers.Adam(learning_rate=0.001), loss=tf.keras.losses.CategoricalCrossentropy(), metrics=['accuracy', f1_metric])
history_model = model.fit(
resampled_ds,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=test_ds,
steps_per_epoch=resampled_steps_per_epoch,
callbacks=callbacks
)
model.save('saved_model/'+'{}CRISPR_Net.h5'.format(saved_prefix))
else:
model = load_model('saved_model/'+'{}CRISPR_Net.h5'.format(saved_prefix))
return model
def crisprDNT(test_ds,resampled_steps_per_epoch,resampled_ds,xtrain, ytrain, xtest, ytest, input_shape, num_classes, batch_size, epochs, callbacks, saved_prefix, retrain=False):
if retrain or not os.path.exists('saved_model/'+'{}crisprDNT.h5'.format(saved_prefix)):
initializer = VarianceScaling(mode='fan_avg', distribution='uniform')
input_value = Input(shape=input_shape)
conv_1_output = Conv2D(64, (1, input_shape[-1]), activation='relu', padding='valid', data_format='channels_first',
kernel_initializer=initializer)(input_value)
conv_1_output = BatchNormalization()(conv_1_output)
conv_1_output_reshape = Reshape(tuple([x for x in conv_1_output.shape.as_list() if x != 1 and x is not None]))(
conv_1_output)
conv_1_output_reshape2 = tf.transpose(conv_1_output_reshape, perm=[0, 2, 1])
conv_1_output_reshape_average = AveragePooling1D(data_format='channels_first')(conv_1_output_reshape2)
conv_1_output_reshape_max = MaxPool1D(data_format='channels_first')(conv_1_output_reshape2)
input_value1 = Reshape((23,input_shape[-1]))(input_value)
bidirectional_1_output = Bidirectional(
LSTM(32, return_sequences=True, dropout=0.2,activation='relu',kernel_initializer=initializer))(
Concatenate(axis=-1)([input_value1,conv_1_output_reshape_average, conv_1_output_reshape_max]))
bidirectional_1_output_ln = LayerNormalization()(bidirectional_1_output)
pos_embedding = PositionalEncoding(sequence_len=23, embedding_dim=64)(bidirectional_1_output_ln)
attention_1_output = MultiHeadAttention(head_num=8)([pos_embedding, pos_embedding, pos_embedding])
residual1 = attention_1_output + pos_embedding
laynorm1 = LayerNormalization()(residual1)
linear1 = Dense(512, activation='relu', kernel_initializer=initializer)(laynorm1)
linear2 = Dense(64, activation='relu', kernel_initializer=initializer)(linear1)
residual2 = laynorm1 + linear2
laynorm2 = LayerNormalization()(residual2)
attention_2_output = MultiHeadAttention(head_num=8)([laynorm2, laynorm2, laynorm2])
residual3 = attention_2_output + laynorm2
laynorm3 = LayerNormalization()(residual3)
linear3 = Dense(512, activation='relu', kernel_initializer=initializer)(laynorm3)
linear4 = Dense(64, activation='relu', kernel_initializer=initializer)(linear3)
residual4 = laynorm3 + linear4
laynorm4 = LayerNormalization()(residual4)
flatten_output = Flatten()(laynorm4)
linear_1_output = (Dense(256, activation='relu', kernel_initializer=initializer)(flatten_output))
linear_2_output = Dense(64, activation='relu', kernel_initializer=initializer)(linear_1_output)
linear_2_output_dropout = Dropout(0.25)(linear_2_output)
linear_3_output = Dense(2, activation='softmax', kernel_initializer=initializer)(linear_2_output_dropout)
model = Model(input_value, linear_3_output)
model.compile(tf.keras.optimizers.Adam(learning_rate=0.001), loss=tf.keras.losses.CategoricalCrossentropy(), metrics=['accuracy', f1_metric])#Adam是0.001,SGD是0.01
history_model = model.fit(
resampled_ds,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=test_ds,
steps_per_epoch=resampled_steps_per_epoch,
callbacks=callbacks
)
model.save('saved_model/'+'{}crisprDNT.h5'.format(saved_prefix))
else:
model = load_model('saved_model/'+'{}crisprDNT.h5'.format(saved_prefix),custom_objects={'PositionalEncoding': PositionalEncoding,'MultiHeadAttention':MultiHeadAttention})
return model