-
Notifications
You must be signed in to change notification settings - Fork 1
/
Depth_calculation.py
51 lines (40 loc) · 1.27 KB
/
Depth_calculation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# importing the basic
import cv2
import cvzone
import numpy as np
from cvzone. FaceMeshModule import FaceMeshDetector
# opening the webcam
web= cv2.VideoCapture(0)
model= FaceMeshDetector(maxFaces=1) #creating the model
while True:
success, img= web.read()
img,face=model.findFaceMesh(img,draw=True)
text_page= np.zeros_like(img) # for the black board
if face:
faced=face[0]
pointL=faced[144]
pointR=faced[374]
#Finding the focal length
w,_= model.findDistance(pointL,pointR)
W=6.3
#d=50
#f=(w*d)/W
#print (f)
#focal length
"""we 1st finding the focal length
so we need to comment the above"""
#finding the distance
cv2.circle(img,pointL,5,(255,0,0),cv2.FILLED)
cv2.circle(img, pointR, 5, (255, 0, 0), cv2.FILLED)
cv2.line(img,pointR,pointL,(0,0,255),5,cv2.FILLED)
f = 840
d = (W * f) / w
print(d)
cvzone.putTextRect(img,f"Distance: {int(d)}cm",
(faced[10][0]-100,faced[10][1]-50),scale=2)
# now we are going to stack them together
image_stack= cvzone.stackImages([img,text_page],2,1)
cv2.imshow("smith",image_stack)
key=cv2.waitKey(1)
if key ==32:
break