We use the standard ResNet50 pretrained on ImageNet.
# Baselines
wandb sweep sweeps/continual_IN.yaml
# MECTA
wandb sweep sweeps/continual_IN_mecta_std_batch.yaml
wandb sweep sweeps/continual_IN_mecta.yaml
wandb sweep sweeps/continual_cifar10_mecta.yaml
wandb sweep sweeps/continual_cifar100_mecta.yaml
Ablation on the forget gate with different CTA methods.
wandb sweep sweeps/continual_IN_mecta_ablate_gate.yaml
# => [03/03] https://wandb.ai/jyhong/MECTA_release/sweeps/7jlh4hm7
# @GPU9 ablate gate on three methods again.
Ablation studies.
- (B) Abalation on the batch size
wandb sweep sweeps/continual_IN_ablation_batch.yaml
# => [03/03] https://wandb.ai/jyhong/MECTA_release/sweeps/5o2wcgi5
# @GPU9 ablation on batch size.
- (L) Abalation on beta_thre
wandb sweep sweeps/continual_IN_ablation_beta_thre.yaml
# => [03/03] https://wandb.ai/jyhong/MECTA_release/sweeps/hy3fkd0j
# @GPU9 ablation on beta_thre
- (C) Prune channels
wandb sweep sweeps/continual_IN_ablation_prune.yaml
# => [03/03] https://wandb.ai/jyhong/MECTA_release/sweeps/fwbdlkoh
# @GPU9
Pair-eval