-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathF64.fm
496 lines (419 loc) · 13.6 KB
/
F64.fm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
F64.0 : F64
F64.parse_binary("0000000000000000000000000000000000000000000000000000000000000000")
F64.1 : F64
F64.parse_binary("0000000000000000000000000000000000000000000000000000111111111100")
F64.180 : F64
F64.parse_binary("0000000000000000000000000000000000000000000000010110011000000010")
F64.2 : F64
F64.parse_binary("0000000000000000000000000000000000000000000000000000000000000010")
F64.256 : F64
F64.parse_binary("0000000000000000000000000000000000000000000000000000111000000010")
T F64.Boundary
| F64.Boundary.new(pts: List(F64.V3));
// An IEEE-754 compliant 64-bit floating point.
T F64
| F64.new (a: Word(64));
T F64.V3
| F64.V3.new(x: F64, y: F64, z: F64);
T F64.Circle
| F64.Circle.new(pos: F64.V3, rad: F64);
T F64.Line
| F64.Line.new(pos: F64.V3, dir: F64.V3);
T F64.Ordering
| F64.Ordering.LT;
| F64.Ordering.EQ;
| F64.Ordering.GT;
T F64.Segment
| F64.Segment.new(a: F64.V3, b: F64.V3);
F64.V3.add(a: F64.V3, b: F64.V3): F64.V3
get a.x a.y a.z = a
get b.x b.y b.z = b
let c.x = F64.add(a.x, a.x)
let c.y = F64.add(a.y, b.y)
let c.z = F64.add(a.z, b.z)
F64.V3.new(c.x, c.y, c.z)
F64.V3.circle_boundary_intersects(c: F64.Circle, b: F64.Boundary): F64
get c.pos c.rad = c
get b.pts = b
case b.pts:
| F64.0;
| #b.pts.head b.pts.tail#
let h0 = b.pts.head
let t0 = b.pts.tail
case t0:
| F64.0;
| #t0.head t0.tail#
let h1 = t0.head
let t1 = t0.tail
let p0 = h0
let p1 = h1
let sg = F64.Segment.new(p0, p1)
let cd = F64.V3.point_segment_sqrdist(c.pos, sg)
let test = F64.ltn(cd, F64.mul(cd, cd))
case test:
| F64.1;
| let boun = F64.Boundary.new(List.cons<F64.V3>(h1, t1))
F64.V3.circle_boundary_intersects(c, boun);;;
//F64.V3.circle_line_intersection(c: F64.Circle, l: F64.Line): Maybe(Pair(F64.V3, F64.V3))
//get c.pos c.rad = c
//get l.pos l.dir = l
//get c.pos.x c.pos.y c.pos.z = c.pos
//let cx = c.pos.x
//let cy = c.pos.y
//let cz = c.pos.z
//get l.pos.x l.pos.y l.pos.z = l.pos
//get l.dir.x l.dir.y l.dir.z = l.dir
//let dx = l.dir.x
//let dy = l.dir.y
//let dz = l.dir.z
//let x1 = F64.sub(l.pos.x, cx)
//let y1 = F64.sub(l.pos.y, cy)
//let x2 = F64.sub(F64.add(l.pos.x, dx), cx)
//let y2 = F64.sub(F64.add(l.pos.y, dy), cy)
//let dd = F64.sub(F64.mul(x1, y2), F64.mul(x2, y1))
//let de = F64.sub(F64.mul(c.rad, c.rad), F64.mul(dd, dd))
//case F64.lte(de, F64.0):
//| Maybe.none<Pair(F64.V3, F64.V3)>;
//| let sx = F64.if<F64>(F64.from_bool(F64.ltn(dy, F64.0)), F64.sub(F64.0, dx), dx)
//let sy = F64.if<F64>(F64.from_bool(F64.ltn(dy, F64.0)), F64.sub(F64.0, dy), dy)
//let px = F64.mul(sx, F64.sqrt(de))
//let py = F64.mul(sy, F64.sqrt(de))
//let qx = F64.mul(dd, dy)
//let qy = F64.mul(F64.sub(F64.0, dd), dx)
//let ax = F64.sub(qx, px)
//let ay = F64.sub(qy, py)
//let bx = F64.add(qx, px)
//let by = F64.add(qy, py)
//let ux = F64.add(ax, cx)
//let uy = F64.add(ay, cy)
//let vx = F64.add(bx, cx)
//let vy = F64.add(by, cy)
//let fst_v = F64.V3.new(ux, uy, F64.0)
//let snd_v = F64.V3.new(vx, vy, F64.0)
//Maybe.some<Pair(F64.V3, F64.V3)>(Pair.new<F64.V3><F64.V3>(fst_v, snd_v))
//;
//F64.V3.circle_to_circle_hit_dist(a: F64.Circle, d: F64.V3, b: F64.Circle): Maybe(F64)
//get a.pos a.rad = a
//get b.pos b.rad = b
//let r = a.rad
//let c = F64.Circle.new(b.pos, F64.add(a.rad, b.rad))
//let l = F64.Line.new(a.pos, F64.V3.norm(d))
//let p = F64.V3.circle_line_intersection(c, l)
//case p:
//| Maybe.none<F64>;
//| get fst snd = p.value
//let d0 = F64.V3.sqr_dist(a.pos, fst)
//let d1 = F64.V3.sqr_dist(a.pos, snd)
//let hp = F64.if<F64.V3>(F64.from_bool(F64.ltn(d0, d1)), fst, snd)
//let dt = F64.V3.dot(d, F64.V3.sub(hp, a.pos))
//let ds = F64.V3.sqr_dist(hp, a.pos)
//let cmp_res = F64.from_bool(F64.gtn(dt, F64.0))
//F64.if<Maybe(F64)>(cmp_res, Maybe.some<F64>(F64.sqrt(ds)), Maybe.none<F64>)
//;
F64.V3.dist(a: F64.V3, b: F64.V3): F64
F64.sqrt(F64.V3.sqr_dist(a, b))
F64.V3.dot(a: F64.V3, b: F64.V3): F64
get a.x a.y a.z = a
get b.x b.y b.z = b
let res = F64.0
let res = F64.add(res, F64.mul(a.x, b.x))
let res = F64.add(res, F64.mul(a.y, b.y))
let res = F64.add(res, F64.mul(a.z, b.z))
res
F64.V3.eql(a: F64.V3, b: F64.V3): Bool
get a.x a.y a.z = a
get b.x b.y b.z = b
let same_x = F64.eql(a.x, b.x)
let same_y = F64.eql(a.y, b.y)
let same_z = F64.eql(a.z, b.z)
Bool.and(same_x, Bool.and(same_y, same_z))
F64.V3.get_x(v: F64.V3): F64
get v.x v.y v.z = v
v.x
F64.V3.get_y(v: F64.V3): F64
get v.x v.y v.z = v
v.y
F64.V3.get_z(v: F64.V3): F64
get v.x v.y v.z = v
v.z
F64.V3.len(v: F64.V3): F64
get v.x v.y v.z = v
let sqr = F64.0
let sqr = F64.add(sqr, F64.mul(v.x, v.x))
let sqr = F64.add(sqr, F64.mul(v.y, v.y))
let sqr = F64.add(sqr, F64.mul(v.z, v.z))
let expo = F64.div(F64.1, F64.add(F64.1, F64.1))
let sqr = F64.pow(sqr, expo)
sqr
F64.V3.look_at(a: F64.V3, b: F64.V3, c: F64.V3): F64.V3
get a.x a.y a.z = a
get b.x b.y b.z = b
get c.x c.y c.z = c
let a_eql_b = F64.V3.eql(a, b)
let diff = F64.V3.sub(b, a)
let normdiff = F64.V3.norm(diff)
case a_eql_b:
| normdiff ;
| c ;
// Return true if "a" is less than "b"
F64.V3.ltn(a: F64.V3, b: F64.V3): Bool
let len_a = F64.V3.len(a)
let len_b = F64.V3.len(b)
Bool.if<Bool>(F64.ltn(len_a, len_b))
| Bool.true;
| Bool.false;
F64.V3.map(fn: F64 -> F64, v: F64.V3): F64.V3
get v.x v.y v.z = v
F64.V3.new(fn(v.x), fn(v.y), fn(v.z))
F64.V3.map_x(fn: F64 -> F64, v: F64.V3): F64.V3
get v.x v.y v.z = v
F64.V3.new(fn(v.x), v.y, v.z)
F64.V3.map_y(fn: F64 -> F64, v: F64.V3): F64.V3
get v.x v.y v.z = v
F64.V3.new(v.x, fn(v.y), v.z)
F64.V3.map_z(fn: F64 -> F64, v: F64.V3): F64.V3
get v.x v.y v.z = v
F64.V3.new(v.x, v.y, fn(v.z))
F64.V3.mul(a: F64.V3, b: F64.V3): F64.V3
get a.x a.y a.z = a
get b.x b.y b.z = b
let c.x = F64.mul(a.x, a.x)
let c.y = F64.mul(a.y, b.y)
let c.z = F64.mul(a.z, b.z)
F64.V3.new(c.x, c.y, c.z)
F64.V3.norm(v: F64.V3): F64.V3
get v.x v.y v.z = v
let len = F64.V3.len(v)
let new_x = F64.div(v.x, len)
let new_y = F64.div(v.y, len)
let new_z = F64.div(v.z, len)
F64.V3.new(new_x, new_y, new_z)
F64.V3.point_segment_dist(p: F64.V3, s: F64.Segment): F64
F64.sqrt(F64.V3.point_segment_sqrdist(p, s))
// Squared distance between a point and a segment
F64.V3.point_segment_sqrdist(p: F64.V3, s: F64.Segment): F64
get p.x p.y p.z = p
get s.a s.b = s
get s.a.x s.a.y s.a.z = s.a
get s.b.x s.b.y s.b.z = s.b
let ab_x_diff_sqrd = F64.pow(F64.sub(s.a.x, s.b.x), F64.2)
let ab_y_diff_sqrd = F64.pow(F64.sub(s.a.y, s.b.y), F64.2)
let pa_x_diff = F64.sub(p.x, s.a.x)
let pa_y_diff = F64.sub(p.y, s.a.y)
let ba_x_diff = F64.sub(s.b.x, s.a.x)
let ba_y_diff = F64.sub(s.b.y, s.a.y)
let l = F64.add(ab_x_diff_sqrd, ab_y_diff_sqrd)
let t = F64.add(F64.mul(pa_x_diff, ba_x_diff), F64.mul(pa_y_diff, ba_y_diff))
let t = F64.div(t, l)
let t = F64.max(F64.0, F64.min(F64.1, t))
let d = F64.0
let t_times_ba_x_diff = F64.mul(t, ba_x_diff)
let t_times_ba_y_diff = F64.mul(t, ba_y_diff)
let k = F64.pow(F64.sub(p.x, F64.add(s.a.x, t_times_ba_x_diff)), F64.2)
let d = F64.add(d, k)
let k = F64.pow(F64.sub(p.y, F64.add(s.a.y, t_times_ba_y_diff)), F64.2)
let d = F64.add(d, k)
d
F64.V3.polygon_to_segments.cons(
pos: F64.V3,
dir: F64.V3,
pt_b: F64.V3,
segs: (Maybe(F64.V3) -> Maybe(F64.V3) -> List(F64.Segment)),
pt_a: Maybe(F64.V3),
pt_0: Maybe(F64.V3)):
List(F64.Segment)
case pt_a:
| segs(Maybe.some<F64.V3>(pt_b), Maybe.some<F64.V3>(pt_b));
| let pt_0 =
case pt_0:
| Maybe.some<F64.V3>(pt_b);
| pt_0;
let p0 = F64.V3.polygon_to_segments.transform(pos, dir, pt_a.value)
let p1 = F64.V3.polygon_to_segments.transform(pos, dir, pt_b)
let sg = F64.Segment.new(p0, p1)
List.cons<F64.Segment>(sg, segs(Maybe.some<F64.V3>(pt_b), pt_0));
F64.V3.polygon_to_segments(
pos: F64.V3,
dir: F64.V3,
pts: List(F64.V3)):
List(F64.Segment)
List.foldr<F64.V3><Maybe(F64.V3) -> Maybe(F64.V3) -> List(F64.Segment)>
|F64.V3.polygon_to_segments.nil(pos, dir);
|F64.V3.polygon_to_segments.cons(pos, dir);
|pts;
|Maybe.none<F64.V3>;
|Maybe.none<F64.V3>;
F64.V3.polygon_to_segments.nil(
pos: F64.V3,
dir: F64.V3,
pt_a: Maybe(F64.V3),
pt_0: Maybe(F64.V3)):
List(F64.Segment)
case pt_0:
| List.nil<F64.Segment>;
| case pt_a:
| List.nil<F64.Segment>;
| let p0 = F64.V3.polygon_to_segments.transform(pos, dir, pt_a.value)
let p1 = F64.V3.polygon_to_segments.transform(pos, dir, pt_0.value)
let sg = F64.Segment.new(p0, p1)
List.cons<F64.Segment>(sg, List.nil<F64.Segment>);;
F64.V3.polygon_to_segments.transform(pos: F64.V3, dir: F64.V3, pnt: F64.V3): F64.V3
get pnt.x pnt.y pnt.z = pnt
get dir.x dir.y dir.z = dir
let a = F64.atan(dir.y, dir.x)
let pnt_x_times_cos_a = F64.mul(pnt.x, F64.cos(a))
let pnt_y_times_sin_a = F64.mul(pnt.y, F64.sin(a))
let pnt_x_times_sin_a = F64.mul(pnt.x, F64.sin(a))
let pnt_y_times_cos_a = F64.mul(pnt.y, F64.cos(a))
let x = F64.sub(pnt_x_times_cos_a, pnt_y_times_sin_a)
let y = F64.add(pnt_x_times_sin_a, pnt_y_times_cos_a)
F64.V3.add(pos, F64.V3.new(x, y, pnt.z))
F64.V3.rot_90(v: F64.V3): F64.V3
get v.x v.y v.z = v
F64.V3.new(v.y, F64.sub(F64.0, v.x), v.z)
// Rotates a vector on the x-y plane around an arbitrary point
F64.V3.rotate(a: F64, v: F64.V3, p: F64.V3): F64.V3
get v.x v.y v.z = v
get p.x p.y p.z = p
let rad = F64.mul(a, F64.div(F64.pi, F64.180))
let sin = F64.sin(rad)
let cos = F64.cos(rad)
let x_diff = F64.sub(v.x, p.x)
let y_diff = F64.sub(v.y, p.y)
let x_diff_times_cos = F64.mul(x_diff, cos)
let x_diff_times_sin = F64.mul(x_diff, sin)
let y_diff_times_cos = F64.mul(y_diff, cos)
let y_diff_times_sin = F64.mul(y_diff, sin)
let new_x = F64.sub(F64.add(p.x, x_diff_times_cos), y_diff_times_sin)
let new_y = F64.add(F64.add(p.y, x_diff_times_sin), y_diff_times_cos)
F64.V3.new(new_x, new_y, v.z)
F64.V3.scale(k: F64, v: F64.V3): F64.V3
get v.x v.y v.z = v
let new_x = F64.mul(k, v.x)
let new_y = F64.mul(k, v.y)
let new_z = F64.mul(k, v.z)
F64.V3.new(new_x, new_y, new_z)
F64.V3.sqr_dist(a: F64.V3, b: F64.V3): F64
get a.x a.y a.z = a
get b.x b.y b.z = b
let two = F64.add(F64.1, F64.1)
let x_diff = F64.pow(F64.sub(a.x, b.x), two)
let y_diff = F64.pow(F64.sub(a.y, b.y), two)
let z_diff = F64.pow(F64.sub(a.z, b.z), two)
F64.add(x_diff, F64.add(y_diff, z_diff))
F64.V3.sub(a: F64.V3, b: F64.V3): F64.V3
get a.x a.y a.z = a
get b.x b.y b.z = b
let c.x = F64.sub(a.x, a.x)
let c.y = F64.sub(a.y, b.y)
let c.z = F64.sub(a.z, b.z)
F64.V3.new(c.x, c.y, c.z)
F64._1 : F64
F64.parse_binary("0000000000000000000000000000000000000000000000000000111111111101")
// Arccos function.
F64.acos: F64 -> F64 //prim//
F64.acos
// TODO Adds two 64-bit floats.
F64.add: F64 -> F64 -> F64 //prim//
F64.add
// Arcsine function.
F64.asin: F64 -> F64 //prim//
F64.asin
// Arctan function.
F64.atan: F64 -> F64 -> F64 //prim//
F64.atan
// TODO
F64.cmp: F64 -> F64 -> Cmp
F64.cmp
// (a) (b)
// let a.word = Newtype.elim<><>(a)
// let b.word = Newtype.elim<><>(b)
// case F64.eql(a, b):
// | Cmp.eql;
// | case Word.ltn<64>(a.word, b.word):
// | Cmp.ltn;
// | Cmp.gtn;
// ;
F64.compare_numbers(a: F64, b: F64): F64.Ordering
Bool.if<F64.Ordering>(F64.eql(a, b))
| F64.Ordering.EQ;
| Bool.if<F64.Ordering>(F64.ltn(b, a))
| F64.Ordering.GT;
| F64.Ordering.LT;;
// Cosine function.
F64.cos: F64 -> F64 //prim//
F64.cos
// TODO Divides two 64-bit floats.
F64.div: F64 -> F64 -> F64 //prim//
F64.div
// TODO
F64.eql(x: F64, y: F64): Bool
get x.word = x
case y:
| get y.word = y
Word.eql<64>(x.word, y.word);
// TODO Exponential function.
F64.exp: F64 -> F64 -> F64 //prim//
F64.exp
F64.floor(x: F64): F64
let ltn_zero = F64.if<_>(F64.from_bool(F64.ltn(x, F64.0)), F64.1, F64.0)
F64.sub(F64.sub(x, F64.mod(x, F64.1)), ltn_zero)
F64.from_bool(b: Bool): F64
case b:
| F64.1;
| F64.0;
F64.gte(a: F64, b: F64): Bool
F64.cmp(a, b)<_>(Bool.false, Bool.true, Bool.true)
F64.gtn(a: F64, b: F64): Bool
F64.cmp(a, b)<_>(Bool.false, Bool.false, Bool.true)
F64.if<A: Type>(x: F64, ct: A, cf: A): A
case F64.eql(x, F64.0):
| cf;
| ct;
// Is x inside the a..b range, with `b` exclusive?
F64.is_between(a: F64, b: F64, x: F64): Bool
let a_eql_x = F64.eql(a, x)
let a_ltn_x = F64.ltn(a, x)
let x_ltn_b = F64.ltn(x, b)
Bool.or(a_eql_x, Bool.and(a_ltn_x, x_ltn_b))
// TODO: Logarithm function.
F64.log: F64 -> F64 //prim//
F64.log
F64.lte(a: F64, b: F64): Bool
F64.cmp(a, b)<_>(Bool.true, Bool.true, Bool.false)
F64.ltn(a: F64, b: F64): Bool
F64.cmp(a, b)<_>(Bool.true, Bool.false, Bool.false)
// TODO
F64.max: F64 -> F64 -> F64 //prim//
F64.max
// TODO
F64.min: F64 -> F64 -> F64 //prim//
F64.min
// Modulus of two 64-bit floats.
F64.mod: F64 -> F64 -> F64 //prim//
F64.mod
// TODO Multiplies two 64-bit floats.
F64.mul: F64 -> F64 -> F64 //prim//
F64.mul
// TODO
F64.parse: String -> F64
F64.parse
F64.parse_binary(str: String): F64
F64.new(Word.from_bits(64, Bits.from_string(str)))
F64.pi : F64
F64.parse_binary("0001100010110100001000100010101011011111100001001001000000000010")
// TODO Power function
F64.pow: F64 -> F64 -> F64 //prim//
F64.pow
// TODO Sine function.
F64.sin: F64 -> F64 //prim//
F64.sin
// Square root function.
F64.sqrt(n: F64): F64 //prim//
F64.pow(n, F64.div(F64.1, F64.2))
// TODO Subtracts two 64-bit floats.
F64.sub: F64 -> F64 -> F64 //prim//
F64.sub
// TODO Tangent function.
F64.tan: F64 -> F64 //prim//
F64.tan