generated from SparkJiao/pytorch-transformers-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer_base_ds_mp.py
454 lines (360 loc) · 19.5 KB
/
trainer_base_ds_mp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# coding=utf-8
#
# Copyright 2023 Nanyang Technological University Fangkai Jiao
#
# Part of this code is based on the source code of Transformers
# (arXiv:1910.03771)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datetime
import glob
import logging
import os
import sys
from typing import Dict, Union, Optional
import deepspeed
import hydra
import torch
import wandb
from deepspeed.pipe import PipelineModule
from deepspeed.runtime.engine import DeepSpeedEngine
from omegaconf import DictConfig, OmegaConf
from torch import distributed as dist
from torch.utils.data import (DataLoader, RandomSampler, DistributedSampler)
from tqdm import tqdm, trange
from transformers import (AutoTokenizer, PreTrainedTokenizer, PretrainedConfig)
import models.llama_ds_mp_wrap
from general_util.logger import setting_logger
from general_util.training_utils import set_seed, load_and_cache_examples
logger: logging.Logger
torch.backends.cuda.matmul.allow_tf32 = True
_pretrained_config: Optional[PretrainedConfig] = None
# Hack here to process the loading checkpoint bug.
def load_checkpoint(self,
load_dir,
tag=None,
load_module_strict=True,
load_optimizer_states=True,
load_lr_scheduler_states=True,
load_module_only=False,
custom_load_fn=None):
"""
Load training checkpoint
Arguments:
load_dir: Required. Directory to load the checkpoint from
tag: Checkpoint tag used as a unique identifier for checkpoint, if not provided will attempt to load tag in 'latest' file
load_module_strict: Optional. Boolean to strictly enforce that the keys in state_dict of module and checkpoint match.
load_optimizer_states: Optional. Boolean to load the training optimizer states from Checkpoint. Ex. ADAM's momentum and variance
load_lr_scheduler_states: Optional. Boolean to add the learning rate scheduler states from Checkpoint.
load_module_only: Optional. Boolean to load only the model weights from the checkpoint. Ex. warmstarting.
custom_load_fn: Optional. Custom model load function.
Returns:
A tuple of ``load_path`` and ``client_state``.
*``load_path``: Path of the loaded checkpoint. ``None`` if loading the checkpoint failed.
*``client_state``: State dictionary used for loading required training states in the client code.
Important: under ZeRO3, one cannot load checkpoint with ``engine.load_checkpoint()`` right
after ``engine.save_checkpoint()``. It is because ``engine.module`` is partitioned, and
``load_checkpoint()`` wants a pristine model. If insisting to do so, please reinitialize engine
before ``load_checkpoint()``.
"""
if tag is None:
latest_tag = "latest_universal" if self.load_universal_checkpoint() else "latest"
latest_path = os.path.join(load_dir, latest_tag)
if os.path.isfile(latest_path):
with open(latest_path, "r") as fd:
tag = fd.read().strip()
else:
if self.load_universal_checkpoint():
raise ValueError(f'Invalid for universal checkpoint: {latest_path} does not exist')
else:
logger.warning(
f"Unable to find latest file at {latest_path}, if trying to load latest "
"checkpoint please ensure this file exists or pass an explicit checkpoint tag when loading a checkpoint."
)
return None, None
if self.zero_optimization_partition_weights():
# Prepare for checkpoint load by ensuring all parameters are partitioned
self.optimizer.checkpoint_event_prologue()
load_path, client_states = self._load_checkpoint(load_dir,
tag,
load_module_strict=load_module_strict,
load_optimizer_states=load_optimizer_states,
load_lr_scheduler_states=load_lr_scheduler_states,
load_module_only=load_module_only,
custom_load_fn=custom_load_fn)
load_zero_checkpoint = load_optimizer_states and (self.zero_optimization() or self.bfloat16_enabled())
if load_zero_checkpoint and load_path is not None:
success = self._load_zero_checkpoint(load_dir, tag, load_optimizer_states=load_optimizer_states)
if not success:
self.optimizer._restore_from_bit16_weights()
if self.zero_optimization_partition_weights():
self.optimizer.checkpoint_event_epilogue()
return load_path, client_states
DeepSpeedEngine.load_checkpoint = load_checkpoint
def load_empty_dataset_and_collator(cfg: DictConfig):
from data.test import TestDataset
from data.collators.flan import FlanCollatorOverCollator
dataset = TestDataset(None, None, getattr(cfg, "total_dataset_len", -1))
collator = FlanCollatorOverCollator(collator=None,
tokenizer=cfg.model_name_or_path,
max_seq_length=128,
decoder_only=True,
return_standard_inputs=True,
)
# Keep consistent with `load_and_cache_examples`.
if getattr(cfg, "dist_load_data_barrier", True):
dist.barrier()
return dataset, collator
def save_model(model: Union[deepspeed.DeepSpeedEngine, deepspeed.PipelineEngine],
cfg: DictConfig, output_dir: str, tokenizer: PreTrainedTokenizer = None, state_dict: Dict = None):
model.save_checkpoint(output_dir)
if cfg.local_rank not in [-1, 0]:
dist.barrier()
if cfg.local_rank in [-1, 0]:
if tokenizer is not None:
tokenizer.save_pretrained(output_dir)
OmegaConf.save(cfg, os.path.join(output_dir, "training_config.yaml"))
logger.info("Saving model checkpoint to %s", output_dir)
if _pretrained_config is not None and isinstance(_pretrained_config, PretrainedConfig):
_pretrained_config.save_pretrained(output_dir)
if cfg.local_rank == 0:
dist.barrier()
def train(cfg, model, tokenizer, continue_from_global_step=0):
""" Train the model """
if cfg.local_rank in [-1, 0]:
tb_helper = hydra.utils.instantiate(cfg.summary_helper) if "summary_helper" in cfg and cfg.summary_helper else None
else:
tb_helper = None
cfg.train_batch_size = cfg.per_gpu_train_batch_size
if "_target_" in cfg.train_file:
files = hydra.utils.instantiate(cfg.train_file)
elif cfg.train_file.startswith("hf:"):
files = [cfg.train_file[3:]]
elif os.path.exists(cfg.train_file):
files = [cfg.train_file]
else:
files = list(glob.glob(cfg.train_file))
logger.info(files)
dp_degree = dist.get_world_size() // cfg.num_stages
if getattr(cfg, "total_dataset_len", -1) > 0:
total_dataset_len = cfg.total_dataset_len
else:
total_dataset_len = 0
if dist.is_initialized() and dist.get_rank() != 0:
dist.barrier()
if not dist.is_initialized() or dist.get_rank() == 0:
for _file in tqdm(files, total=len(files)):
sub_train_dataset = load_and_cache_examples(cfg, tokenizer, _split="train", _file=_file)
total_dataset_len += len(sub_train_dataset)
del sub_train_dataset
if dist.is_initialized():
dist.barrier()
if dist.is_initialized():
if dist.get_rank() == 0:
objects = [total_dataset_len for _ in range(dist.get_world_size())]
else:
objects = [None for _ in range(dist.get_world_size())]
output_list = [None]
dist.scatter_object_list(output_list, objects, src=0)
if dist.get_rank() != 0:
total_dataset_len = output_list[0]
assert total_dataset_len > 0
if getattr(cfg, "do_preprocess", False):
return
if "extended_vocab" in cfg and cfg.extended_vocab:
logger.info(f"Extended extra vocab size: {cfg.extended_vocab}")
model.resize_token_embeddings(model.config.vocab_size + cfg.extended_vocab)
_actual_train_batch_size = cfg.train_batch_size * cfg.gradient_accumulation_steps * dp_degree
if cfg.max_steps > 0:
t_total = cfg.max_steps
cfg.num_train_epochs = cfg.max_steps // (total_dataset_len // _actual_train_batch_size) + 1
else:
t_total = total_dataset_len // _actual_train_batch_size * cfg.num_train_epochs
num_warmup_steps = int(t_total * cfg.warmup_proportion) if cfg.warmup_proportion else cfg.warmup_steps
ds_config = cfg.ds_cfg
if "total_num_steps" in ds_config.scheduler.params:
ds_config.scheduler.params.total_num_steps = t_total
ds_config.scheduler.params.warmup_num_steps = num_warmup_steps
ds_config = OmegaConf.to_container(ds_config, resolve=True)
model, optimizer, _, scheduler = deepspeed.initialize(model=model,
model_parameters=[p for p in model.parameters() if p.requires_grad],
config=ds_config)
model.load_checkpoint(cfg.model_name_or_path, load_module_only=True, load_optimizer_states=False, load_lr_scheduler_states=False)
logger.info(optimizer.optimizer)
if torch.__version__ >= "2" and (getattr(os.environ, "TORCH_COMPILE", False) or getattr(cfg, "compile", False)):
model = torch.compile(model, mode="max-autotune")
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", total_dataset_len)
logger.info(" Num Epochs = %d", cfg.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", cfg.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", _actual_train_batch_size)
logger.info(" Gradient Accumulation steps = %d", cfg.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
logger.info(" Warmup steps = %d", num_warmup_steps)
if continue_from_global_step > 0:
logger.info("Fast forwarding to global step %d to resume training from latest checkpoint...", continue_from_global_step)
model.load_checkpoint(cfg.resume)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
# model.zero_grad()
train_iterator = trange(int(cfg.num_train_epochs), desc="Epoch", disable=cfg.local_rank not in [-1, 0])
set_seed(cfg) # Added here for reproducibility (even between python 2 and 3)
for epoch in train_iterator:
for _file in files:
if model.is_first_stage() or model.is_last_stage():
sub_train_dataset = load_and_cache_examples(cfg, tokenizer, _split="train", _file=_file)
if dp_degree > 1:
dp_id = model.grid.get_data_parallel_id()
sub_train_sampler = DistributedSampler(sub_train_dataset, num_replicas=dp_degree, rank=dp_id)
else:
sub_train_sampler = RandomSampler(sub_train_dataset)
cfg.train_batch_size = cfg.train_batch_size * max(1, dp_degree)
sub_train_collator = hydra.utils.instantiate(cfg.collator) if "collator" in cfg and cfg.collator else None
sub_train_dataloader = DataLoader(dataset=sub_train_dataset,
sampler=sub_train_sampler,
batch_size=cfg.train_batch_size,
collate_fn=sub_train_collator,
num_workers=cfg.num_workers,
pin_memory=True,
prefetch_factor=cfg.prefetch_factor,
drop_last=True,
)
else:
sub_train_dataset, sub_train_collator = load_empty_dataset_and_collator(cfg)
sub_train_sampler = None
sub_train_dataloader = DataLoader(dataset=sub_train_dataset,
batch_size=cfg.train_batch_size * dp_degree,
collate_fn=sub_train_collator,
drop_last=True,
shuffle=False)
epoch_update_steps = len(sub_train_dataloader) // cfg.gradient_accumulation_steps
sub_train_dataloader = iter(deepspeed.utils.RepeatingLoader(sub_train_dataloader))
if sub_train_sampler is not None and isinstance(sub_train_sampler, DistributedSampler):
sub_train_sampler.set_epoch(epoch)
for _ in tqdm(range(epoch_update_steps), desc="Iteration", disable=cfg.local_rank not in [-1, 0], dynamic_ncols=True):
# If training is continued from a checkpoint, fast forward
# to the state of that checkpoint.
if global_step < continue_from_global_step:
for _ in range(cfg.gradient_accumulation_steps):
next(sub_train_dataloader)
global_step += 1
continue
model.train()
loss = model.train_batch(data_iter=sub_train_dataloader)
global_step += 1
tr_loss += loss.item()
# Log metrics
log_metrics = {}
if cfg.local_rank in [-1, 0]:
log_metrics['lr'] = scheduler.get_lr()[0]
log_metrics['loss'] = tr_loss - logging_loss
logging_loss = tr_loss
# Save model checkpoint
if cfg.save_steps > 0 and global_step % cfg.save_steps == 0:
output_dir = os.path.join(cfg.output_dir, 'checkpoint-{}'.format(global_step))
if cfg.local_rank in [-1, 0] and not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
save_model(model, cfg, output_dir, tokenizer)
if len(log_metrics) > 0 and cfg.local_rank in [-1, 0]:
wandb.log(log_metrics)
del log_metrics
if 0 < cfg.max_steps < global_step:
train_iterator.close()
break
if 0 < cfg.max_steps < global_step:
break
return global_step, tr_loss / global_step
@hydra.main(config_path="conf", config_name="config", version_base="1.2")
def main(cfg: DictConfig):
if "LOCAL_RANK" in os.environ and os.environ["LOCAL_RANK"] not in [-1, "-1"]:
cfg.local_rank = int(os.environ["LOCAL_RANK"])
if cfg.local_rank == -1 or cfg.no_cuda:
device = str(torch.device("cuda" if torch.cuda.is_available() and not cfg.no_cuda else "cpu"))
cfg.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs
torch.cuda.set_device(cfg.local_rank)
device = str(torch.device("cuda", cfg.local_rank))
deepspeed.init_distributed(dist_backend="nccl", timeout=datetime.timedelta(seconds=7200))
cfg.n_gpu = 1
cfg.world_size = dist.get_world_size()
cfg.device = device
global logger
logger = setting_logger(cfg.output_dir, local_rank=cfg.local_rank)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
cfg.local_rank, cfg.device, cfg.n_gpu, bool(cfg.local_rank != -1), cfg.fp16)
logger.warning(f"CPU cores: {os.cpu_count()}")
# Set seed
set_seed(cfg)
use_barrier = not os.path.exists(cfg.model_name_or_path)
# Load pre-trained model and tokenizer
if use_barrier and cfg.local_rank not in [-1, 0]:
dist.barrier() # Make sure only the first process in distributed training will download model & vocab
tokenizer = AutoTokenizer.from_pretrained(cfg.model_name_or_path)
from general_util.tokenization_utils import expand_special_tokenizer
expand_special_tokenizer(tokenizer)
if getattr(cfg, "enable_flash_attention", False):
logger.info("⚡⚡⚡ enable flash attention.")
from models.patching import replace_llama_attn_with_flash_attn
replace_llama_attn_with_flash_attn()
model_or_config = hydra.utils.call(cfg.model, cfg.model_name_or_path)
layers = hydra.utils.call(cfg.get_layers, model_or_config)
if hasattr(cfg, "pp_loss_fn") and cfg.pp_loss_fn is not None:
pp_loss_fn = hydra.utils.call(cfg.pp_loss_fn)
else:
pp_loss_fn = models.llama_ds_mp_wrap.loss_fn
model_pipe = PipelineModule(layers=layers,
num_stages=cfg.num_stages,
loss_fn=pp_loss_fn,
activation_checkpoint_interval=getattr(cfg, "activation_checkpoint_interval", 0)
)
logger.info(f"{model_pipe.topology}")
cfg.topology = str(model_pipe.topology)
if use_barrier and cfg.local_rank == 0:
dist.barrier() # Make sure only the first process in distributed training will download model & vocab
if cfg.local_rank in [-1, 0] and cfg.do_train:
if not os.path.exists(cfg.output_dir):
os.makedirs(cfg.output_dir)
OmegaConf.save(cfg, os.path.join(cfg.output_dir, "training_config.yaml"))
if isinstance(model_or_config, PretrainedConfig):
model_or_config.save_pretrained(cfg.output_dir)
global _pretrained_config
_pretrained_config = model_or_config
wandb.init(
project="LLaMA-BiFLAN",
name=cfg.exp_name,
notes=cfg.exp_notes,
config=OmegaConf.to_container(cfg, resolve=True),
)
wandb.define_metric(cfg.prediction_cfg.metric, summary=("max" if cfg.prediction_cfg.measure > 0 else "min"))
# Training
if cfg.do_train:
continue_from_global_step = 0 # If set to 0, start training from the beginning
if os.path.exists(cfg.output_dir) and getattr(cfg, "resume", None):
checkpoint = cfg.resume
logger.info("Resuming training from the latest checkpoint: %s", checkpoint)
continue_from_global_step = int(checkpoint.split('-')[-1])
global_step, tr_loss = train(cfg, model_pipe, tokenizer, continue_from_global_step)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
if __name__ == "__main__":
os.environ["HYDRA_FULL_ERROR"] = "1"
hydra_formatted_args = []
# convert the cli params added by torch.distributed.launch into Hydra format
for arg in sys.argv:
if arg.startswith("--"):
hydra_formatted_args.append(arg[len("--"):])
else:
hydra_formatted_args.append(arg)
sys.argv = hydra_formatted_args
print(sys.argv)
main()