-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathaggregator.py
147 lines (102 loc) · 6.07 KB
/
aggregator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# MIT License
# Copyright (c) 2019 Sebastian Penhouet
# GitHub project: https://github.com/Spenhouet/tensorboard-aggregator
# ==============================================================================
"""Aggregates multiple tensorbaord runs"""
import ast
import argparse
import os
import re
from pathlib import Path
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
from tensorflow.core.util.event_pb2 import Event
FOLDER_NAME = 'aggregates'
def extract(dpath, subpath):
scalar_accumulators = [EventAccumulator(str(dpath / dname / subpath)).Reload(
).scalars for dname in os.listdir(dpath) if dname != FOLDER_NAME]
# Filter non event files
scalar_accumulators = [scalar_accumulator for scalar_accumulator in scalar_accumulators if scalar_accumulator.Keys()]
# Get and validate all scalar keys
all_keys = [tuple(scalar_accumulator.Keys()) for scalar_accumulator in scalar_accumulators]
assert len(set(all_keys)) == 1, "All runs need to have the same scalar keys. There are mismatches in {}".format(all_keys)
keys = all_keys[0]
all_scalar_events_per_key = [[scalar_accumulator.Items(key) for scalar_accumulator in scalar_accumulators] for key in keys]
# Get and validate all steps per key
all_steps_per_key = [[tuple(scalar_event.step for scalar_event in scalar_events) for scalar_events in all_scalar_events]
for all_scalar_events in all_scalar_events_per_key]
for i, all_steps in enumerate(all_steps_per_key):
assert len(set(all_steps)) == 1, "For scalar {} the step numbering or count doesn't match. Step count for all runs: {}".format(
keys[i], [len(steps) for steps in all_steps])
steps_per_key = [all_steps[0] for all_steps in all_steps_per_key]
# Get and average wall times per step per key
wall_times_per_key = [np.mean([tuple(scalar_event.wall_time for scalar_event in scalar_events) for scalar_events in all_scalar_events], axis=0)
for all_scalar_events in all_scalar_events_per_key]
# Get values per step per key
values_per_key = [[[scalar_event.value for scalar_event in scalar_events] for scalar_events in all_scalar_events]
for all_scalar_events in all_scalar_events_per_key]
all_per_key = dict(zip(keys, zip(steps_per_key, wall_times_per_key, values_per_key)))
return all_per_key
def aggregate_to_summary(dpath, aggregation_ops, extracts_per_subpath):
for op in aggregation_ops:
for subpath, all_per_key in extracts_per_subpath.items():
path = dpath / FOLDER_NAME / op.__name__ / dpath.name / subpath
aggregations_per_key = {key: (steps, wall_times, op(values, axis=0)) for key, (steps, wall_times, values) in all_per_key.items()}
write_summary(path, aggregations_per_key)
def write_summary(dpath, aggregations_per_key):
writer = tf.summary.create_file_writer(str(dpath))
for key, (steps, wall_times, aggregations) in aggregations_per_key.items():
for step, wall_time, aggregation in zip(steps, wall_times, aggregations):
with writer.as_default():
tf.summary.scalar(key, aggregation, step=step)
writer.flush()
def aggregate_to_csv(dpath, aggregation_ops, extracts_per_subpath):
for subpath, all_per_key in extracts_per_subpath.items():
for key, (steps, wall_times, values) in all_per_key.items():
aggregations = [op(values, axis=0) for op in aggregation_ops]
write_csv(dpath, subpath, key, dpath.name, aggregations, steps, aggregation_ops)
def get_valid_filename(s):
s = str(s).strip().replace(' ', '_')
return re.sub(r'(?u)[^-\w.]', '', s)
def write_csv(dpath, subpath, key, fname, aggregations, steps, aggregation_ops):
path = dpath / FOLDER_NAME
if not path.exists():
os.makedirs(path)
file_name = get_valid_filename(key) + '-' + get_valid_filename(subpath) + '-' + fname + '.csv'
aggregation_ops_names = [aggregation_op.__name__ for aggregation_op in aggregation_ops]
df = pd.DataFrame(np.transpose(aggregations), index=steps, columns=aggregation_ops_names)
df.to_csv(path / file_name, sep=';')
def aggregate(dpath, output, subpaths):
name = dpath.name
aggregation_ops = [np.mean, np.min, np.max, np.median, np.std, np.var]
ops = {
'summary': aggregate_to_summary,
'csv': aggregate_to_csv
}
print("Started aggregation {}".format(name))
extracts_per_subpath = {subpath: extract(dpath, subpath) for subpath in subpaths}
ops.get(output)(dpath, aggregation_ops, extracts_per_subpath)
print("Ended aggregation {}".format(name))
if __name__ == '__main__':
def param_list(param):
p_list = ast.literal_eval(param)
if type(p_list) is not list:
raise argparse.ArgumentTypeError("Parameter {} is not a list".format(param))
return p_list
parser = argparse.ArgumentParser()
parser.add_argument("--path", type=str, help="main path for tensorboard files", default=os.getcwd())
parser.add_argument("--subpaths", type=param_list, help="subpath structures", default=['.'])
parser.add_argument("--output", type=str, help="aggregation can be saved as tensorboard file (summary) or as table (csv)", default='summary')
args = parser.parse_args()
path = Path(args.path)
if not path.exists():
raise argparse.ArgumentTypeError("Parameter {} is not a valid path".format(path))
subpaths = [path / dname / subpath for subpath in args.subpaths for dname in os.listdir(path) if dname != FOLDER_NAME]
for subpath in subpaths:
if not os.path.exists(subpath):
raise argparse.ArgumentTypeError("Parameter {} is not a valid path".format(subpath))
if args.output not in ['summary', 'csv']:
raise argparse.ArgumentTypeError("Parameter {} is not summary or csv".format(args.output))
aggregate(path, args.output, args.subpaths)