diff --git a/src/spikeinterface/core/basesorting.py b/src/spikeinterface/core/basesorting.py index 2af48407a3..9a0e242d62 100644 --- a/src/spikeinterface/core/basesorting.py +++ b/src/spikeinterface/core/basesorting.py @@ -135,7 +135,7 @@ def get_total_duration(self) -> float: def get_unit_spike_train( self, - unit_id, + unit_id: str | int, segment_index: Union[int, None] = None, start_frame: Union[int, None] = None, end_frame: Union[int, None] = None, diff --git a/src/spikeinterface/core/generate.py b/src/spikeinterface/core/generate.py index 0316b3bab1..aa69fe585b 100644 --- a/src/spikeinterface/core/generate.py +++ b/src/spikeinterface/core/generate.py @@ -2,7 +2,7 @@ import math import warnings import numpy as np -from typing import Literal +from typing import Literal, Optional from math import ceil from .basesorting import SpikeVectorSortingSegment @@ -134,7 +134,7 @@ def generate_sorting( seed = _ensure_seed(seed) rng = np.random.default_rng(seed) num_segments = len(durations) - unit_ids = np.arange(num_units) + unit_ids = [str(idx) for idx in np.arange(num_units)] spikes = [] for segment_index in range(num_segments): @@ -1111,7 +1111,7 @@ def __init__( """ - unit_ids = np.arange(num_units) + unit_ids = [str(idx) for idx in np.arange(num_units)] super().__init__(sampling_frequency, unit_ids) self.num_units = num_units @@ -1138,6 +1138,7 @@ def __init__( firing_rates=firing_rates, refractory_period_seconds=self.refractory_period_seconds, seed=segment_seed, + unit_ids=unit_ids, t_start=None, ) self.add_sorting_segment(segment) @@ -1161,6 +1162,7 @@ def __init__( firing_rates: float | np.ndarray, refractory_period_seconds: float | np.ndarray, seed: int, + unit_ids: list[str], t_start: Optional[float] = None, ): self.num_units = num_units @@ -1177,7 +1179,8 @@ def __init__( self.refractory_period_seconds = np.full(num_units, self.refractory_period_seconds, dtype="float64") self.segment_seed = seed - self.units_seed = {unit_id: self.segment_seed + hash(unit_id) for unit_id in range(num_units)} + self.units_seed = {unit_id: abs(self.segment_seed + hash(unit_id)) for unit_id in unit_ids} + self.num_samples = math.ceil(sampling_frequency * duration) super().__init__(t_start) @@ -1280,7 +1283,7 @@ def __init__( noise_block_size: int = 30000, ): - channel_ids = np.arange(num_channels) + channel_ids = [str(idx) for idx in np.arange(num_channels)] dtype = np.dtype(dtype).name # Cast to string for serialization if dtype not in ("float32", "float64"): raise ValueError(f"'dtype' must be 'float32' or 'float64' but is {dtype}") diff --git a/src/spikeinterface/core/tests/test_basesnippets.py b/src/spikeinterface/core/tests/test_basesnippets.py index 64f7f76819..f243dd9d9f 100644 --- a/src/spikeinterface/core/tests/test_basesnippets.py +++ b/src/spikeinterface/core/tests/test_basesnippets.py @@ -41,8 +41,8 @@ def test_BaseSnippets(create_cache_folder): assert snippets.get_num_segments() == len(duration) assert snippets.get_num_channels() == num_channels - assert np.all(snippets.ids_to_indices([0, 1, 2]) == [0, 1, 2]) - assert np.all(snippets.ids_to_indices([0, 1, 2], prefer_slice=True) == slice(0, 3, None)) + assert np.all(snippets.ids_to_indices(["0", "1", "2"]) == [0, 1, 2]) + assert np.all(snippets.ids_to_indices(["0", "1", "2"], prefer_slice=True) == slice(0, 3, None)) # annotations / properties snippets.annotate(gre="ta") @@ -60,7 +60,7 @@ def test_BaseSnippets(create_cache_folder): ) # missing property - snippets.set_property("string_property", ["ciao", "bello"], ids=[0, 1]) + snippets.set_property("string_property", ["ciao", "bello"], ids=["0", "1"]) values = snippets.get_property("string_property") assert values[2] == "" @@ -70,14 +70,14 @@ def test_BaseSnippets(create_cache_folder): snippets.set_property, key="string_property_nan", values=["hola", "chabon"], - ids=[0, 1], + ids=["0", "1"], missing_value=np.nan, ) # int properties without missing values raise an error assert_raises(Exception, snippets.set_property, key="int_property", values=[5, 6], ids=[1, 2]) - snippets.set_property("int_property", [5, 6], ids=[1, 2], missing_value=200) + snippets.set_property("int_property", [5, 6], ids=["1", "2"], missing_value=200) values = snippets.get_property("int_property") assert values.dtype.kind == "i" diff --git a/src/spikeinterface/core/tests/test_channelsaggregationrecording.py b/src/spikeinterface/core/tests/test_channelsaggregationrecording.py index 118b6092a9..99d6890dfd 100644 --- a/src/spikeinterface/core/tests/test_channelsaggregationrecording.py +++ b/src/spikeinterface/core/tests/test_channelsaggregationrecording.py @@ -38,10 +38,12 @@ def test_channelsaggregationrecording(): assert np.allclose(traces1_1, recording_agg.get_traces(channel_ids=[str(channel_ids[1])], segment_index=seg)) assert np.allclose( - traces2_0, recording_agg.get_traces(channel_ids=[str(num_channels + channel_ids[0])], segment_index=seg) + traces2_0, + recording_agg.get_traces(channel_ids=[str(num_channels + int(channel_ids[0]))], segment_index=seg), ) assert np.allclose( - traces3_2, recording_agg.get_traces(channel_ids=[str(2 * num_channels + channel_ids[2])], segment_index=seg) + traces3_2, + recording_agg.get_traces(channel_ids=[str(2 * num_channels + int(channel_ids[2]))], segment_index=seg), ) # all traces traces1 = recording1.get_traces(segment_index=seg) diff --git a/src/spikeinterface/core/tests/test_sortinganalyzer.py b/src/spikeinterface/core/tests/test_sortinganalyzer.py index 35ab18b5f2..15f089f784 100644 --- a/src/spikeinterface/core/tests/test_sortinganalyzer.py +++ b/src/spikeinterface/core/tests/test_sortinganalyzer.py @@ -31,6 +31,14 @@ def get_dataset(): noise_kwargs=dict(noise_levels=5.0, strategy="tile_pregenerated"), seed=2205, ) + + # TODO: the tests or the sorting analyzer make assumptions about the ids being integers + # So keeping this the way it was + integer_channel_ids = [int(id) for id in recording.get_channel_ids()] + integer_unit_ids = [int(id) for id in sorting.get_unit_ids()] + + recording = recording.rename_channels(new_channel_ids=integer_channel_ids) + sorting = sorting.rename_units(new_unit_ids=integer_unit_ids) return recording, sorting diff --git a/src/spikeinterface/core/tests/test_unitsselectionsorting.py b/src/spikeinterface/core/tests/test_unitsselectionsorting.py index 1e72b0ab28..3ecb702aa2 100644 --- a/src/spikeinterface/core/tests/test_unitsselectionsorting.py +++ b/src/spikeinterface/core/tests/test_unitsselectionsorting.py @@ -10,25 +10,29 @@ def test_basic_functions(): sorting = generate_sorting(num_units=3, durations=[0.100, 0.100], sampling_frequency=30000.0) - sorting2 = UnitsSelectionSorting(sorting, unit_ids=[0, 2]) - assert np.array_equal(sorting2.unit_ids, [0, 2]) + sorting2 = UnitsSelectionSorting(sorting, unit_ids=["0", "2"]) + assert np.array_equal(sorting2.unit_ids, ["0", "2"]) assert sorting2.get_parent() == sorting - sorting3 = UnitsSelectionSorting(sorting, unit_ids=[0, 2], renamed_unit_ids=["a", "b"]) + sorting3 = UnitsSelectionSorting(sorting, unit_ids=["0", "2"], renamed_unit_ids=["a", "b"]) assert np.array_equal(sorting3.unit_ids, ["a", "b"]) assert np.array_equal( - sorting.get_unit_spike_train(0, segment_index=0), sorting2.get_unit_spike_train(0, segment_index=0) + sorting.get_unit_spike_train(unit_id="0", segment_index=0), + sorting2.get_unit_spike_train(unit_id="0", segment_index=0), ) assert np.array_equal( - sorting.get_unit_spike_train(0, segment_index=0), sorting3.get_unit_spike_train("a", segment_index=0) + sorting.get_unit_spike_train(unit_id="0", segment_index=0), + sorting3.get_unit_spike_train(unit_id="a", segment_index=0), ) assert np.array_equal( - sorting.get_unit_spike_train(2, segment_index=0), sorting2.get_unit_spike_train(2, segment_index=0) + sorting.get_unit_spike_train(unit_id="2", segment_index=0), + sorting2.get_unit_spike_train(unit_id="2", segment_index=0), ) assert np.array_equal( - sorting.get_unit_spike_train(2, segment_index=0), sorting3.get_unit_spike_train("b", segment_index=0) + sorting.get_unit_spike_train(unit_id="2", segment_index=0), + sorting3.get_unit_spike_train(unit_id="b", segment_index=0), ) @@ -36,13 +40,13 @@ def test_failure_with_non_unique_unit_ids(): seed = 10 sorting = generate_sorting(num_units=3, durations=[0.100], sampling_frequency=30000.0, seed=seed) with pytest.raises(AssertionError): - sorting2 = UnitsSelectionSorting(sorting, unit_ids=[0, 2], renamed_unit_ids=["a", "a"]) + sorting2 = UnitsSelectionSorting(sorting, unit_ids=["0", "2"], renamed_unit_ids=["a", "a"]) def test_custom_cache_spike_vector(): sorting = generate_sorting(num_units=3, durations=[0.100, 0.100], sampling_frequency=30000.0) - sub_sorting = UnitsSelectionSorting(sorting, unit_ids=[2, 0], renamed_unit_ids=["b", "a"]) + sub_sorting = UnitsSelectionSorting(sorting, unit_ids=["2", "0"], renamed_unit_ids=["b", "a"]) cached_spike_vector = sub_sorting.to_spike_vector(use_cache=True) computed_spike_vector = sub_sorting.to_spike_vector(use_cache=False) assert np.all(cached_spike_vector == computed_spike_vector) diff --git a/src/spikeinterface/curation/tests/common.py b/src/spikeinterface/curation/tests/common.py index 9cd20f4bfc..e9c4c4a463 100644 --- a/src/spikeinterface/curation/tests/common.py +++ b/src/spikeinterface/curation/tests/common.py @@ -19,6 +19,11 @@ def make_sorting_analyzer(sparse=True): seed=2205, ) + channel_ids_as_integers = [id for id in range(recording.get_num_channels())] + unit_ids_as_integers = [id for id in range(sorting.get_num_units())] + recording = recording.rename_channels(new_channel_ids=channel_ids_as_integers) + sorting = sorting.rename_units(new_unit_ids=unit_ids_as_integers) + sorting_analyzer = create_sorting_analyzer(sorting=sorting, recording=recording, format="memory", sparse=sparse) sorting_analyzer.compute("random_spikes") sorting_analyzer.compute("waveforms", **job_kwargs) diff --git a/src/spikeinterface/curation/tests/test_sortingview_curation.py b/src/spikeinterface/curation/tests/test_sortingview_curation.py index 945aca7937..ff80be365d 100644 --- a/src/spikeinterface/curation/tests/test_sortingview_curation.py +++ b/src/spikeinterface/curation/tests/test_sortingview_curation.py @@ -49,6 +49,9 @@ def test_gh_curation(): Test curation using GitHub URI. """ sorting = generate_sorting(num_units=10) + unit_ids_as_int = [id for id in range(sorting.get_num_units())] + sorting = sorting.rename_units(new_unit_ids=unit_ids_as_int) + # curated link: # https://figurl.org/f?v=npm://@fi-sci/figurl-sortingview@12/dist&d=sha1://058ab901610aa9d29df565595a3cc2a81a1b08e5 gh_uri = "gh://SpikeInterface/spikeinterface/main/src/spikeinterface/curation/tests/sv-sorting-curation.json" @@ -76,6 +79,8 @@ def test_sha1_curation(): Test curation using SHA1 URI. """ sorting = generate_sorting(num_units=10) + unit_ids_as_int = [id for id in range(sorting.get_num_units())] + sorting = sorting.rename_units(new_unit_ids=unit_ids_as_int) # from SHA1 # curated link: @@ -105,6 +110,8 @@ def test_json_curation(): Test curation using a JSON file. """ sorting = generate_sorting(num_units=10) + unit_ids_as_int = [id for id in range(sorting.get_num_units())] + sorting = sorting.rename_units(new_unit_ids=unit_ids_as_int) # from curation.json json_file = parent_folder / "sv-sorting-curation.json" @@ -248,6 +255,8 @@ def test_json_no_merge_curation(): Test curation with no merges using a JSON file. """ sorting = generate_sorting(num_units=10) + unit_ids_as_int = [id for id in range(sorting.get_num_units())] + sorting = sorting.rename_units(new_unit_ids=unit_ids_as_int) json_file = parent_folder / "sv-sorting-curation-no-merge.json" sorting_curated = apply_sortingview_curation(sorting, uri_or_json=json_file) diff --git a/src/spikeinterface/extractors/tests/test_mdaextractors.py b/src/spikeinterface/extractors/tests/test_mdaextractors.py index 0ef6697c6c..78e6afb65e 100644 --- a/src/spikeinterface/extractors/tests/test_mdaextractors.py +++ b/src/spikeinterface/extractors/tests/test_mdaextractors.py @@ -9,6 +9,12 @@ def test_mda_extractors(create_cache_folder): cache_folder = create_cache_folder rec, sort = generate_ground_truth_recording(durations=[10.0], num_units=10) + ids_as_integers = [id for id in range(rec.get_num_channels())] + rec = rec.rename_channels(new_channel_ids=ids_as_integers) + + ids_as_integers = [id for id in range(sort.get_num_units())] + sort = sort.rename_units(new_unit_ids=ids_as_integers) + MdaRecordingExtractor.write_recording(rec, cache_folder / "mdatest") rec_mda = MdaRecordingExtractor(cache_folder / "mdatest") probe = rec_mda.get_probe() diff --git a/src/spikeinterface/postprocessing/tests/test_multi_extensions.py b/src/spikeinterface/postprocessing/tests/test_multi_extensions.py index bf0000135c..be0070d94a 100644 --- a/src/spikeinterface/postprocessing/tests/test_multi_extensions.py +++ b/src/spikeinterface/postprocessing/tests/test_multi_extensions.py @@ -23,6 +23,11 @@ def get_dataset(): seed=2205, ) + channel_ids_as_integers = [id for id in range(recording.get_num_channels())] + unit_ids_as_integers = [id for id in range(sorting.get_num_units())] + recording = recording.rename_channels(new_channel_ids=channel_ids_as_integers) + sorting = sorting.rename_units(new_unit_ids=unit_ids_as_integers) + # since templates are going to be averaged and this might be a problem for amplitude scaling # we select the 3 units with the largest templates to split analyzer_raw = create_sorting_analyzer(sorting, recording, format="memory", sparse=False) diff --git a/src/spikeinterface/preprocessing/tests/test_clip.py b/src/spikeinterface/preprocessing/tests/test_clip.py index 724ba2c963..c18c7d37af 100644 --- a/src/spikeinterface/preprocessing/tests/test_clip.py +++ b/src/spikeinterface/preprocessing/tests/test_clip.py @@ -14,12 +14,12 @@ def test_clip(): rec1 = clip(rec, a_min=-1.5) rec1.save(verbose=False) - traces0 = rec0.get_traces(segment_index=0, channel_ids=[1]) + traces0 = rec0.get_traces(segment_index=0, channel_ids=["1"]) assert traces0.shape[1] == 1 assert np.all(-2 <= traces0[0] <= 3) - traces1 = rec1.get_traces(segment_index=0, channel_ids=[0, 1]) + traces1 = rec1.get_traces(segment_index=0, channel_ids=["0", "1"]) assert traces1.shape[1] == 2 assert np.all(-1.5 <= traces1[1]) @@ -34,11 +34,11 @@ def test_blank_staturation(): rec1 = blank_staturation(rec, quantile_threshold=0.01, direction="both", chunk_size=10000) rec1.save(verbose=False) - traces0 = rec0.get_traces(segment_index=0, channel_ids=[1]) + traces0 = rec0.get_traces(segment_index=0, channel_ids=["1"]) assert traces0.shape[1] == 1 assert np.all(traces0 < 3.0) - traces1 = rec1.get_traces(segment_index=0, channel_ids=[0]) + traces1 = rec1.get_traces(segment_index=0, channel_ids=["0"]) assert traces1.shape[1] == 1 # use a smaller value to be sure a_min = rec1._recording_segments[0].a_min diff --git a/src/spikeinterface/preprocessing/tests/test_interpolate_bad_channels.py b/src/spikeinterface/preprocessing/tests/test_interpolate_bad_channels.py index 1189f04f7d..06bde4e3d1 100644 --- a/src/spikeinterface/preprocessing/tests/test_interpolate_bad_channels.py +++ b/src/spikeinterface/preprocessing/tests/test_interpolate_bad_channels.py @@ -163,7 +163,9 @@ def test_output_values(): expected_weights = np.r_[np.tile(np.exp(-2), 3), np.exp(-4)] expected_weights /= np.sum(expected_weights) - si_interpolated_recording = spre.interpolate_bad_channels(recording, bad_channel_indexes, sigma_um=1, p=1) + si_interpolated_recording = spre.interpolate_bad_channels( + recording, bad_channel_ids=bad_channel_ids, sigma_um=1, p=1 + ) si_interpolated = si_interpolated_recording.get_traces() expected_ts = si_interpolated[:, 1:] @ expected_weights diff --git a/src/spikeinterface/preprocessing/tests/test_normalize_scale.py b/src/spikeinterface/preprocessing/tests/test_normalize_scale.py index 576b570832..151752e0e6 100644 --- a/src/spikeinterface/preprocessing/tests/test_normalize_scale.py +++ b/src/spikeinterface/preprocessing/tests/test_normalize_scale.py @@ -15,7 +15,7 @@ def test_normalize_by_quantile(): rec2 = normalize_by_quantile(rec, mode="by_channel") rec2.save(verbose=False) - traces = rec2.get_traces(segment_index=0, channel_ids=[1]) + traces = rec2.get_traces(segment_index=0, channel_ids=["1"]) assert traces.shape[1] == 1 rec2 = normalize_by_quantile(rec, mode="pool_channel") diff --git a/src/spikeinterface/preprocessing/tests/test_rectify.py b/src/spikeinterface/preprocessing/tests/test_rectify.py index b8bb31015e..a2a06e7a1f 100644 --- a/src/spikeinterface/preprocessing/tests/test_rectify.py +++ b/src/spikeinterface/preprocessing/tests/test_rectify.py @@ -15,7 +15,7 @@ def test_rectify(): rec2 = rectify(rec) rec2.save(verbose=False) - traces = rec2.get_traces(segment_index=0, channel_ids=[1]) + traces = rec2.get_traces(segment_index=0, channel_ids=["1"]) assert traces.shape[1] == 1 # import matplotlib.pyplot as plt diff --git a/src/spikeinterface/qualitymetrics/tests/conftest.py b/src/spikeinterface/qualitymetrics/tests/conftest.py index 01fa16c8d7..ac1789a375 100644 --- a/src/spikeinterface/qualitymetrics/tests/conftest.py +++ b/src/spikeinterface/qualitymetrics/tests/conftest.py @@ -16,6 +16,11 @@ def small_sorting_analyzer(): seed=1205, ) + channel_ids_as_integers = [id for id in range(recording.get_num_channels())] + unit_ids_as_integers = [id for id in range(sorting.get_num_units())] + recording = recording.rename_channels(new_channel_ids=channel_ids_as_integers) + sorting = sorting.rename_units(new_unit_ids=unit_ids_as_integers) + sorting = sorting.select_units([2, 7, 0], ["#3", "#9", "#4"]) sorting_analyzer = create_sorting_analyzer(recording=recording, sorting=sorting, format="memory") @@ -60,6 +65,11 @@ def sorting_analyzer_simple(): seed=1205, ) + channel_ids_as_integers = [id for id in range(recording.get_num_channels())] + unit_ids_as_integers = [id for id in range(sorting.get_num_units())] + recording = recording.rename_channels(new_channel_ids=channel_ids_as_integers) + sorting = sorting.rename_units(new_unit_ids=unit_ids_as_integers) + sorting_analyzer = create_sorting_analyzer(sorting, recording, format="memory", sparse=True) sorting_analyzer.compute("random_spikes", max_spikes_per_unit=300, seed=1205) diff --git a/src/spikeinterface/sortingcomponents/tests/common.py b/src/spikeinterface/sortingcomponents/tests/common.py index 01e4445a13..d5e5b6be1b 100644 --- a/src/spikeinterface/sortingcomponents/tests/common.py +++ b/src/spikeinterface/sortingcomponents/tests/common.py @@ -21,4 +21,10 @@ def make_dataset(): noise_kwargs=dict(noise_levels=5.0, strategy="on_the_fly"), seed=2205, ) + + channel_ids_as_integers = [id for id in range(recording.get_num_channels())] + unit_ids_as_integers = [id for id in range(sorting.get_num_units())] + recording = recording.rename_channels(new_channel_ids=channel_ids_as_integers) + sorting = sorting.rename_units(new_unit_ids=unit_ids_as_integers) + return recording, sorting