-
Notifications
You must be signed in to change notification settings - Fork 33
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
RuntimeError: Error(s) in loading state_dict for UNetArch: #15
Comments
Please refer to #6 which is similar to this problem. |
Run inside docker with all installation steps passed. The same problem with models LED_Deploy_ELD_NikonD850_CVPR20_Setting_Ratio1-200.pth , LED_Deploy_SID_SonyA7S2_CVPR20_Setting_Ratio100-300.pth , LED_Deploy_SID_SonyA7S2_MM22_Setting_Ratio100-300.pth . At that, all other Deploy models from release 0.1.0 works fine. In all cases script image_process.py was run with only -p, --data_path and --save_path parameters. Is this correct? |
The reason why it's necessary to specify |
Parameter --led is working with LED_Deploy_ELD_NikonD850_CVPR20_Setting_Ratio1-200.pth , LED_Deploy_SID_SonyA7S2_CVPR20_Setting_Ratio100-300.pth, LED_Deploy_SID_SonyA7S2_MM22_Setting_Ratio100-300.pth . But not working with release 0.1.1 LED+NAFNet_Deploy_SID_SonyA7S2_CVPR20_Setting_Ratio100-300.pth and LED+Restormer_Deploy_SID_SonyA7S2_CVPR20_Setting_Ratio100-300.pth . |
To use architectures other than UNet, like Restormer/NAFNet. you need to specify the Lines 198 to 199 in 75f1081
And we have detailed options for Restormer/NAFNet in commit 75f1081. Line 186 in 75f1081
|
(led) root@00ee9d88811f:~/LED# python scripts/image_process.py -p checkpoints/pretrained/LED_Pretrain_None_None_CVPR20_Setting_Ratio1-200.pth --data_path images/test/ -opt options/base/network_g/unet.yaml
Building network...
Loading checkpoint...
Loading UNetArch model from checkpoints/pretrained/LED_Pretrain_None_None_CVPR20_Setting_Ratio1-200.pth, with param key: [params].
Traceback (most recent call last):
File "scripts/image_process.py", line 115, in
image_process()
File "/root/anaconda3/envs/led/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "scripts/image_process.py", line 91, in image_process
load_network(network_g, args.pretrained_network, param_key='params' if not args.led else 'params_deploy')
File "scripts/image_process.py", line 37, in load_network
net.load_state_dict(load_net, strict=strict)
File "/root/anaconda3/envs/led/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1671, in load_state_dict
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for UNetArch:
Missing key(s) in state_dict: "conv1_1.weight", "conv1_1.bias", "conv1_2.weight", "conv1_2.bias", "conv2_1.weight", "conv2_1.bias", "conv2_2.weight", "conv2_2.bias", "conv3_1.weight", "conv3_1.bias", "conv3_2.weight", "conv3_2.bias", "conv4_1.weight", "conv4_1.bias", "conv4_2.weight", "conv4_2.bias", "conv5_1.weight", "conv5_1.bias", "conv5_2.weight", "conv5_2.bias", "conv6_1.weight", "conv6_1.bias", "conv6_2.weight", "conv6_2.bias", "conv7_1.weight", "conv7_1.bias", "conv7_2.weight", "conv7_2.bias", "conv8_1.weight", "conv8_1.bias", "conv8_2.weight", "conv8_2.bias", "conv9_1.weight", "conv9_1.bias", "conv9_2.weight", "conv9_2.bias".
Unexpected key(s) in state_dict: "conv1_1.main_weight", "conv1_1.main_bias", "conv1_1.align_weights.0", "conv1_1.align_weights.1", "conv1_1.align_weights.2", "conv1_1.align_weights.3", "conv1_1.align_weights.4", "conv1_1.align_weights.5", "conv1_1.align_biases.0", "conv1_1.align_biases.1", "conv1_1.align_biases.2", "conv1_1.align_biases.3", "conv1_1.align_biases.4", "conv1_1.align_biases.5", "conv1_2.main_weight", "conv1_2.main_bias", "conv1_2.align_weights.0", "conv1_2.align_weights.1", "conv1_2.align_weights.2", "conv1_2.align_weights.3", "conv1_2.align_weights.4", "conv1_2.align_weights.5", "conv1_2.align_biases.0", "conv1_2.align_biases.1", "conv1_2.align_biases.2", "conv1_2.align_biases.3", "conv1_2.align_biases.4", "conv1_2.align_biases.5", "conv2_1.main_weight", "conv2_1.main_bias", "conv2_1.align_weights.0", "conv2_1.align_weights.1", "conv2_1.align_weights.2", "conv2_1.align_weights.3", "conv2_1.align_weights.4", "conv2_1.align_weights.5", "conv2_1.align_biases.0", "conv2_1.align_biases.1", "conv2_1.align_biases.2", "conv2_1.align_biases.3", "conv2_1.align_biases.4", "conv2_1.align_biases.5", "conv2_2.main_weight", "conv2_2.main_bias", "conv2_2.align_weights.0", "conv2_2.align_weights.1", "conv2_2.align_weights.2", "conv2_2.align_weights.3", "conv2_2.align_weights.4", "conv2_2.align_weights.5", "conv2_2.align_biases.0", "conv2_2.align_biases.1", "conv2_2.align_biases.2", "conv2_2.align_biases.3", "conv2_2.align_biases.4", "conv2_2.align_biases.5", "conv3_1.main_weight", "conv3_1.main_bias", "conv3_1.align_weights.0", "conv3_1.align_weights.1", "conv3_1.align_weights.2", "conv3_1.align_weights.3", "conv3_1.align_weights.4", "conv3_1.align_weights.5", "conv3_1.align_biases.0", "conv3_1.align_biases.1", "conv3_1.align_biases.2", "conv3_1.align_biases.3", "conv3_1.align_biases.4", "conv3_1.align_biases.5", "conv3_2.main_weight", "conv3_2.main_bias", "conv3_2.align_weights.0", "conv3_2.align_weights.1", "conv3_2.align_weights.2", "conv3_2.align_weights.3", "conv3_2.align_weights.4", "conv3_2.align_weights.5", "conv3_2.align_biases.0", "conv3_2.align_biases.1", "conv3_2.align_biases.2", "conv3_2.align_biases.3", "conv3_2.align_biases.4", "conv3_2.align_biases.5", "conv4_1.main_weight", "conv4_1.main_bias", "conv4_1.align_weights.0", "conv4_1.align_weights.1", "conv4_1.align_weights.2", "conv4_1.align_weights.3", "conv4_1.align_weights.4", "conv4_1.align_weights.5", "conv4_1.align_biases.0", "conv4_1.align_biases.1", "conv4_1.align_biases.2", "conv4_1.align_biases.3", "conv4_1.align_biases.4", "conv4_1.align_biases.5", "conv4_2.main_weight", "conv4_2.main_bias", "conv4_2.align_weights.0", "conv4_2.align_weights.1", "conv4_2.align_weights.2", "conv4_2.align_weights.3", "conv4_2.align_weights.4", "conv4_2.align_weights.5", "conv4_2.align_biases.0", "conv4_2.align_biases.1", "conv4_2.align_biases.2", "conv4_2.align_biases.3", "conv4_2.align_biases.4", "conv4_2.align_biases.5", "conv5_1.main_weight", "conv5_1.main_bias", "conv5_1.align_weights.0", "conv5_1.align_weights.1", "conv5_1.align_weights.2", "conv5_1.align_weights.3", "conv5_1.align_weights.4", "conv5_1.align_weights.5", "conv5_1.align_biases.0", "conv5_1.align_biases.1", "conv5_1.align_biases.2", "conv5_1.align_biases.3", "conv5_1.align_biases.4", "conv5_1.align_biases.5", "conv5_2.main_weight", "conv5_2.main_bias", "conv5_2.align_weights.0", "conv5_2.align_weights.1", "conv5_2.align_weights.2", "conv5_2.align_weights.3", "conv5_2.align_weights.4", "conv5_2.align_weights.5", "conv5_2.align_biases.0", "conv5_2.align_biases.1", "conv5_2.align_biases.2", "conv5_2.align_biases.3", "conv5_2.align_biases.4", "conv5_2.align_biases.5", "conv6_1.main_weight", "conv6_1.main_bias", "conv6_1.align_weights.0", "conv6_1.align_weights.1", "conv6_1.align_weights.2", "conv6_1.align_weights.3", "conv6_1.align_weights.4", "conv6_1.align_weights.5", "conv6_1.align_biases.0", "conv6_1.align_biases.1", "conv6_1.align_biases.2", "conv6_1.align_biases.3", "conv6_1.align_biases.4", "conv6_1.align_biases.5", "conv6_2.main_weight", "conv6_2.main_bias", "conv6_2.align_weights.0", "conv6_2.align_weights.1", "conv6_2.align_weights.2", "conv6_2.align_weights.3", "conv6_2.align_weights.4", "conv6_2.align_weights.5", "conv6_2.align_biases.0", "conv6_2.align_biases.1", "conv6_2.align_biases.2", "conv6_2.align_biases.3", "conv6_2.align_biases.4", "conv6_2.align_biases.5", "conv7_1.main_weight", "conv7_1.main_bias", "conv7_1.align_weights.0", "conv7_1.align_weights.1", "conv7_1.align_weights.2", "conv7_1.align_weights.3", "conv7_1.align_weights.4", "conv7_1.align_weights.5", "conv7_1.align_biases.0", "conv7_1.align_biases.1", "conv7_1.align_biases.2", "conv7_1.align_biases.3", "conv7_1.align_biases.4", "conv7_1.align_biases.5", "conv7_2.main_weight", "conv7_2.main_bias", "conv7_2.align_weights.0", "conv7_2.align_weights.1", "conv7_2.align_weights.2", "conv7_2.align_weights.3", "conv7_2.align_weights.4", "conv7_2.align_weights.5", "conv7_2.align_biases.0", "conv7_2.align_biases.1", "conv7_2.align_biases.2", "conv7_2.align_biases.3", "conv7_2.align_biases.4", "conv7_2.align_biases.5", "conv8_1.main_weight", "conv8_1.main_bias", "conv8_1.align_weights.0", "conv8_1.align_weights.1", "conv8_1.align_weights.2", "conv8_1.align_weights.3", "conv8_1.align_weights.4", "conv8_1.align_weights.5", "conv8_1.align_biases.0", "conv8_1.align_biases.1", "conv8_1.align_biases.2", "conv8_1.align_biases.3", "conv8_1.align_biases.4", "conv8_1.align_biases.5", "conv8_2.main_weight", "conv8_2.main_bias", "conv8_2.align_weights.0", "conv8_2.align_weights.1", "conv8_2.align_weights.2", "conv8_2.align_weights.3", "conv8_2.align_weights.4", "conv8_2.align_weights.5", "conv8_2.align_biases.0", "conv8_2.align_biases.1", "conv8_2.align_biases.2", "conv8_2.align_biases.3", "conv8_2.align_biases.4", "conv8_2.align_biases.5", "conv9_1.main_weight", "conv9_1.main_bias", "conv9_1.align_weights.0", "conv9_1.align_weights.1", "conv9_1.align_weights.2", "conv9_1.align_weights.3", "conv9_1.align_weights.4", "conv9_1.align_weights.5", "conv9_1.align_biases.0", "conv9_1.align_biases.1", "conv9_1.align_biases.2", "conv9_1.align_biases.3", "conv9_1.align_biases.4", "conv9_1.align_biases.5", "conv9_2.main_weight", "conv9_2.main_bias", "conv9_2.align_weights.0", "conv9_2.align_weights.1", "conv9_2.align_weights.2", "conv9_2.align_weights.3", "conv9_2.align_weights.4", "conv9_2.align_weights.5", "conv9_2.align_biases.0", "conv9_2.align_biases.1", "conv9_2.align_biases.2", "conv9_2.align_biases.3", "conv9_2.align_biases.4", "conv9_2.align_biases.5".
模型权重无法加载
The text was updated successfully, but these errors were encountered: