From 3bfd08ebbad4c268d3a8f696acbb7c0c8cf782a1 Mon Sep 17 00:00:00 2001 From: yahai Date: Mon, 2 Sep 2019 17:51:33 +0800 Subject: [PATCH] =?UTF-8?q?Update:=20=E6=96=B0=E5=A2=9E=E6=96=87=E7=AB=A0?= =?UTF-8?q?=E3=80=8A=E9=98=BF=E9=87=8C=E4=BA=91ARMS=E5=B0=8F=E7=A8=8B?= =?UTF-8?q?=E5=BA=8F=E7=9B=91=E6=8E=A7=E8=BF=9B=E9=98=B6=E4=B9=8B=E8=B7=AF?= =?UTF-8?q?=E3=80=8B?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- README.md | 3 + ...33\351\230\266\344\271\213\350\267\257.md" | 209 ++++++++++++++++++ 2 files changed, 212 insertions(+) create mode 100644 "docs/processing/monitor/\351\230\277\351\207\214\344\272\221ARMS\345\260\217\347\250\213\345\272\217\347\233\221\346\216\247\350\277\233\351\230\266\344\271\213\350\267\257.md" diff --git a/README.md b/README.md index 28bf16e..38dea75 100644 --- a/README.md +++ b/README.md @@ -35,6 +35,8 @@ ### 2. 事中“止血” #### 2.1 监控告警 ###### [虾米SRE实践:监控体系升级之路](docs/processing/monitor/虾米SRE实践_监控体系升级之路.md) +###### [阿里云ARMS小程序监控进阶之路](docs/processing/monitor/阿里云ARMS小程序监控进阶之路.md) + #### 2.2 异常巡检 #### 2.3 流量调度 #### 2.4 资损防控 @@ -102,6 +104,7 @@ * 2019-09-05 * [系统黄金指标之延迟(Latency)指标的故障诊断](docs/diagnosis/rootcause/系统黄金指标之延迟(Latency)指标的故障诊断.md)@绍宽 * [【剖析|SOFARPC 框架】之 SOFARPC 链路追踪剖析](docs/diagnosis/tracing/剖析SOFARPC框架之SOFARPC链路追踪剖析.md)@畅为/碧远/卓与 + * [阿里云ARMS小程序监控进阶之路](docs/processing/monitor/阿里云ARMS小程序监控进阶之路.md)@慕扉 * 数据库诊断,@承嗣 * Nginx 链路追踪,@竹影 * Nacos 常见问题及解决方法,@敦谷 diff --git "a/docs/processing/monitor/\351\230\277\351\207\214\344\272\221ARMS\345\260\217\347\250\213\345\272\217\347\233\221\346\216\247\350\277\233\351\230\266\344\271\213\350\267\257.md" "b/docs/processing/monitor/\351\230\277\351\207\214\344\272\221ARMS\345\260\217\347\250\213\345\272\217\347\233\221\346\216\247\350\277\233\351\230\266\344\271\213\350\267\257.md" new file mode 100644 index 0000000..6c12a2e --- /dev/null +++ "b/docs/processing/monitor/\351\230\277\351\207\214\344\272\221ARMS\345\260\217\347\250\213\345\272\217\347\233\221\346\216\247\350\277\233\351\230\266\344\271\213\350\267\257.md" @@ -0,0 +1,209 @@ +# 阿里云ARMS小程序监控进阶之路 + +> 作者:付萌(慕扉) +> 创作日期:2019-05-31 +> 注:本文为 [FDCon2019第4届中国前端开发者千人峰会《阿里云ARMS小程序监控进阶之路》](https://www.bagevent.com/event/2497313) 分享内容,已经过数据脱敏处理,转载请注明出处。 + +[ARMS](https://www.aliyun.com/product/arms) 是应用实时监控服务 (Application Real-Time Monitoring Service)的简称,是阿里云的一款 APM 类的监控产品。 + +## 小程序监控的现状及问题 + +### 小程序的发展及变化 + +从2017年到现在,腾讯、阿里、百度、头条等互联网公司相继推出了小程序,重点投入打造小程序发展生态圈。小程序已然从最初的基础元年开始走向大爆发,成为移动互联网的一个重要方向。 + +再来看一组数据,是艾媒咨询在2018年底的统计数据,其中2018年小程序用户迅猛增长,用户规模超4亿,预计2020年将超8.5亿人,基本实现手机网民的全覆盖。 + +![](https://img.alicdn.com/tfs/TB1uJY5V4jaK1RjSZFAXXbdLFXa-909-418.jpg) + +通过这两组内容,我们可以看到小程序发展是非常迅速的。那么小程序为什么会如此火爆呢? + +这里抛出2个因素,当然也和大会的分享主题相关: + +1. 运行环境不同,有望解决信息孤岛问题 +我们都知道在移动互联网时代,每个APP都是一个孤岛,APP之间不能相互跳转,但小程序可以使用APP开放出来的能力,完成小程序之间的自由跳转。 +2. 小程序开发相对于APP开发成本低且易于维护,对于中小企业也能承受起 +小程序是运行在APP客户端上的,逻辑层和视图层是两个独立的线程,通过APP提供的Native系统层转发来完成相互通信。这样一方面在APP层面可以管控和安全,同时双线程可以不用担心抢占资源而导致页面卡顿等问题,从图中可以看到,小程序底层框架将APP相关native能力进行封装,对外透出的仍然是我们前端开发的三板斧:js、css、html,但需要符合相应平台的规范。 + +![](https://img.alicdn.com/tfs/TB1EgzTV5rpK1RjSZFhXXXSdXXa-909-418.jpg) + +### 小程序监控的现状及问题 + +小程序有这么多好处及优势,但对于小程序开发同学依然绕不过一个问题,那就是针对线上问题如何及时发现、定位、解决,减少影响用户数。作为开发者,不可能24小时都在电脑前等待用户反馈解决问题,我们需要有一个系统能收集用户的使用信息,辅助问题的定位与修复,减少开发人员的负担,那么小程序监控就非常有必要了。 + +和web监控、weex监控一样,小程序监控也属于前端监控的一个场景,但由于运行环境的不同,不能直接复用web监控的能力。 + +现在业界提供的小程序监控方案大概分为以下3类: + +1. 用户数据监控 +例如:新增用户数、访问次数、用户留存率等数据,主要用来助力产品运营,不能帮助开发人员定位解决线上问题。 +2. 错误监控 +这种情况下的监控数据较为单一,缺乏网络请求及性能相关的数据 +3. 性能监控 +该类监控大部分只支持指定类型的小程序监控,比如我新开发了一个某某小程序,却发现没有一个监控系统支持接入,那就非常尴尬了,处于一个无监控可用的状态。 + +整体来看,现在的小程序的监控体系并不成熟,所以我们希望能完善小程序的监控体系。 + +## 阿里云ARMS小程序监控SDK进阶之路 + +下图是用户打开一个小程序后的整个过程的示意图。从页面请求、到页面渲染、交互的过程。 + +![](https://img.alicdn.com/tfs/TB1kjHVVVzqK1RjSZFoXXbfcXXa-909-418.jpg) + +作为开发同学,会更关注: +1. 网络请求,因为这些直接影响小程序页面上数据及交互情况。 +2. 页面报错,相信也是每个小程序开发同学都会特别关注的内容。 +3. 解决部分小程序无监控可用的现状,覆盖所有标准小程序。 + +当然还有很多其他关注的内容,在本次分享中会重点针对这三部分来看我们的解决方案及衍进过程。 + +### 网络请求 + +所有的线上故障最直接的反应是在页面上,所以大家的第一反应都是前端有问题,但很多情况下并不是前端的问题,相信大家都有感触。所以我们需要有监控来看是哪里出了问题。 + +#### 发现问题:API成功率 + +第一步,我们要提供API的请求成功率,来确认是前端的问题还是后端的问题。通过hack的方式获取到请求发起的状态及请求返回后的状态,从而计算到API的成功率及耗时情况。 + +通过这部分数据,可以确认问题了,但不能帮助定位和解决这个问题。比如某API请求的成功率从最初的99%左右直接降到了60%左右,这肯定是有问题的,我们会让后端同学去排查,但后端同学排查也是非常困难的,因为问题无法直接复现。到这里是不是遇到了瓶颈?必须要根据请求涉及到的所有链路一路排查下去?那要花费的时间就无法预估了,线上问题分秒必争。 + +针对这个问题怎么来解呢?看一下针对网络请求提供的第二个能力:全链路追踪。 + +#### 定位问题:全链路追踪 + +我们会给到错误请求整个链路,即前端及后端的数据,然后提供后端的整个调用链路,红色的部分是有问题的链路,这样后端同学就可以直接排查有问题的链路解决问题了。1分钟内发现问题,5分钟内能帮你快速定位到具体问题。 + +![](https://img.alicdn.com/tfs/TB1eBD1VVzqK1RjSZFCXXbbxVXa-909-418.jpg) + +##### 链路监控的原理 + +链路追踪的原理是基于基于谷歌开源的[《Dapper, a Large-Scale Distributed Systems Tracing Infrastructure》](https://ai.google/research/pubs/pub36356)论文,也是业界做链路追踪的理论基础。 + +在一次分布式调用链路中,如果C链路断掉了,我们要如何来发现呢?首先是在调用的源头生成一个全局唯一的TraceId,透传到后续的RPC链路,记录相应的事件日志,收集所有日志,处理,可以发现哪个RPC调用出现了问题。 + +分布式的调用链路,都有依赖关系,如何能够还原整个堆栈呢?那机制就是每个RPC根据链路的深度生成一个唯一的标识,通过标识的关系可以快速还原一次调用的堆栈。 + +![](https://img.alicdn.com/tfs/TB1Gvv1VZbpK1RjSZFyXXX_qFXa-909-418.jpg) + +根据这个原理,我们需要将一次请求的前端链路与后端链路串联起来,其中做全链路监控的挑战点如下: + +1. TraceId如何透传 +2. TraceId在整个链路的唯一性如何保证 +3. 如何还原用户请求上下文 + +##### TraceId如何透传 + +方案一:通过后端将traceId透传到客户端 + +由于最初TraceId是后端RPC调用生成的,为保证TraceId的含义,可以将将TraceId透传到前端,从而串联起来。但这个方案有一个问题,那就是如果网络原因,接口超时了,那么TraceId就无法透传了,整个链路还是断开的,所以我们舍弃了这个方案。 + +方案二:从请求的源头生成TraceId透传到后端的整个链路 + +透传的方式可以有以下三种方式: +- cookie机制:由于小程序运行环境原因,不提供cookie机制,所以这个方案行不通。 +- param:在请求的URL参数中加入TraceId会破坏业务的请求原始URL,太突兀也不是最好的方式。 +- request header:在请求头中加入TraceId的值,同时小程序请求不存在同源限制,所以最终选择了该方式。 + +##### TraceId在整个链路的唯一性 + +全链路追踪还需要保证一个点就是TraceId在整个链路的唯一性,否则就会导致链路内容不准确。 + +保证机制有2个: +- 在TraceId生成源头利用生成规则保证唯一性; +- 透传过程中,下游TraceId要与上游保持一致。 + +##### 还原用户请求上下文 + +我们都知道用户在操作页面时,不同的操作顺序也有可能会触发不同的逻辑,从而导致的问题也会不一样。所以如何还原某次失败的链路的上下文场景呢? + +还原上下文肯定是通过时间先后顺序还原,但时间区间如何选择,时间区间长或者短都有可能无法帮助用户定位到问题。所以我们提出了一个方法,就是PV周期的概念,所有的有效操作基本上是在一次PV周期中的记做SID,通过获取一次PV周期内所有的traceId链路,根据时间顺序可以还原用户操作的一个上下文场景。 + +通过这三步衍进,形成最终的[阿里云ARMS](https://www.aliyun.com/product/arms)全链路追踪方案。 + +![](https://img.alicdn.com/tfs/TB1QO3UXlGw3KVjSZFDXXXWEpXa-909-418.jpg) + +### 页面稳定性 + +页面稳定性的整个衍进路线如图: + +![](https://img.alicdn.com/tfs/TB1_76AoTZmx1VjSZFGXXax2XXa-909-418.jpg) + +1. jserror的错误数 +该方案存在一个问题,举一个栗子:场景一用户在一次访问时频繁触发js错误,场景二用户每次访问必触发js错误,两个场景上报的js错误数量一样,但影响程度却不同,所以直接的错误数是无法衡量影响程度的。 +2. jserror错误率 = js错误样本 / PV样本 +该方案可以解决1.0版本中单纯的统计jserror样本量存在的问题,但仍存在问题,就是该值会超出100%,值的大小无法和严重程度划等号。 +3. jserror错误率 = 发生过js错误的PV样本 / 总的PV样本 +通过该方案计算得到的jserror错误率值一定会<=100%,从而值的大小可衡量错误的影响程度。 + +在方案的衍进过程中涉及到了PV的采集原理,在传统的web监控中通过document的onload及unload等机制可以确定一次PV周期,但小程序运行在JScore中,没有该方案。 + +那么我们就要看一下小程序的一个生命周期了,我们发现Page页面无论是初次启动还是切换到前台,都会触发onshow事件,通过onUnload和onHide时间会切出该页面,所以我们的PV统计会根据该原理进行统计。 + + +### 覆盖标准小程序 + +我们好不容易熬过了IE时代,webView时代,现在又进入了更加多元化的小程序时代,如何让所有小程序都有监控可用也是我们需要考虑的一个问题。 + +![](https://img.alicdn.com/tfs/TB1rUAMXk5E3KVjSZFCXXbuzXXa-909-418.jpg) + +本着一个最基本的分层原则,将小程序通用的部分抽取出来作为小程序基础的base层,不同小程序的监控特殊内容基于base层做扩展,形成针对指定小程序的SDK。 + +也期待后续小程序发展可以走向标准及规范。 + +下图是[阿里云ARMS](https://www.aliyun.com/product/arms)小程序监控SDK的整体架构,可方便场景的快速扩展。 + +![](https://img.alicdn.com/tfs/TB1pVIVXa1s3KVjSZFAXXX_ZXXa-909-418.jpg) + +## 阿里云ARMS小程序监控系统设计 + +站在一个全局的角度来看,一个监控系统需要有: + +1. 数据采集 +2. 数据处理 +3. 数据消费 + +一个好的监控系统,这三部分缺一不可。看起来比较简单,但当真正做一个监控系统时,会遇到很多问题。 + +![](https://img.alicdn.com/tfs/TB13sxjXrys3KVjSZFnXXXFzpXa-909-418.jpg) + +针对数据处理部分,来看一下[阿里云ARMS](https://www.aliyun.com/product/arms)小程序监控的衍进路线。 + +### 1.ARMS实时计算 +作为一个监控系统,数据的实时性是硬性要求,否则就难以达到监控的目的。所以在计算部分,我们有ARMS实时计算引擎帮助用户快速发现问题。实时计算的前提是要知道计算的规则,所以我们会设置通用的计算规则进行数据的统计。 + +实时计算如此强大,但针对监控系统也不是万能的,也会有他受限的地方。例如: +- 实时计算后的数据均为统计后的数据了,没有原始日志无法对问题场景还原; +- 计算规则提前设置; +- 实时计算的维度统计不能无限制增加,会加大计算的压力; + +### 2.阿里云日志服务SLS +针对ARMS实时计算受限的情况,加入了阿里云日志服务,一方面可以做源日志的存储,方便问题的定位;一方面可以提供针对索引的快速查询及聚类分析。比如地理、设备、版本号、分辨率等等维度可以建立索引,通过日志服务完成聚类分析。减轻实时计算压力的同时也保证了用户多维诉求。 + +实时计算可帮助快速发现问题,阿里云日志服务可以帮助定位问题,这样看,实时计算+阿里云日志服务是完美的配合,但用户的诉求还远不止于此。 + +### 3.Nodejs流式计算 +比如:根据某业务想针对某个特殊指标进行数据统计,业务定制诉求对于实时性要求并不高,主要帮助做业务决策。针对这种情况,在实时计算中增加计算规则并不合算,因为并不是所有业务都要这个逻辑,同时在日志服务中存储的原始日志量级较大,存储的时间也不宜太长等问题,我们需要有一个能定制化处理用户诉求的引擎,所以加入了Nodejs流式计算引擎。 + +主要过程如下: + +![](https://img.alicdn.com/tfs/TB1c8hbXEWF3KVjSZPhXXXclXXa-909-418.jpg) + +读取数据流,将数据流拆分成多个小的数据流,其中每个小的数据流是一个独立的计算单元,利用计算引擎的多进程处理,每次处理都会维护一个状态表,最终将结果合并处理作为该数据流的一个统计结果。由于在定制化处理,维护的是用户提交的计算逻辑,所以整个的处理流程不涉及多张表之间的jion、sort等复杂的计算,计算的速度也是非常快的。 + +在数据处理部分,我们通过实时计算、日志服务、nodejs流式计算不断的加入,满足不同用户对于数据的诉求,也意在挖掘出数据的更大价值,帮助用户更好的发现、定位、解决问题。 + +由于篇幅限制,部分内容不能展开来分享,有兴趣的同学可以加入我们的钉钉技术交流群。 + + + +## 附录 +- [阿里云业务实时监控服务ARMS](https://www.aliyun.com/product/arms) +- [阿里云业务实时监控服务ARMS前端监控](https://arms.console.aliyun.com/#/retcode) +- [小程序监控接入文档](https://help.aliyun.com/document_detail/106086.html) + +## 加入我们 +【稳定大于一切】打造国内稳定性领域知识库,**让无法解决的问题少一点点,让世界的确定性多一点点**。 + +* [GitHub 地址](https://github.com/StabilityMan/StabilityGuide) +* 钉钉群号:23179349 +* 如果阅读本文有所收获,欢迎分享给身边的朋友,期待更多同学的加入!