|
37 | 37 |
|
38 | 38 | order = ['morning', 'afternoon', 'overcast', 'night']
|
39 | 39 |
|
| 40 | + # barplot 1 |
| 41 | + ######################################################### |
40 | 42 | # Draw a nested boxplot to show bills by day and time
|
41 | 43 | sns.boxplot(x = x_var, y = y_var,
|
42 | 44 | hue = hue_var, data = df, order = order)
|
43 | 45 | plt.title(title_str)
|
44 | 46 | plt.savefig(results_dir + '/all_tiny_taxinet_barplot.pdf')
|
45 | 47 | plt.close()
|
46 | 48 |
|
47 |
| - |
| 49 | + # barplot 2 |
| 50 | + ######################################################### |
48 | 51 | order = ['morning', 'afternoon', 'overcast']
|
49 | 52 |
|
50 | 53 | # Draw a nested boxplot to show bills by day and time
|
|
53 | 56 | plt.title(title_str)
|
54 | 57 | plt.savefig(results_dir + '/subset_tiny_taxinet_barplot.pdf')
|
55 | 58 | plt.close()
|
| 59 | + |
| 60 | + x_var = 'Evaluation Condition' |
| 61 | + y_var = 'Loss' |
| 62 | + hue_var = 'Model Type' |
| 63 | + |
| 64 | + title_str = 'Tiny Taxinet Pytorch Model' |
| 65 | + |
| 66 | + order = ['morning', 'afternoon', 'overcast', 'night'] |
| 67 | + |
| 68 | + col_var = 'Train Condition' |
| 69 | + # barplot 1 |
| 70 | + ######################################################### |
| 71 | + # Draw a nested boxplot to show bills by day and time |
| 72 | + sns.catplot(x = x_var, y = y_var, col = hue_var, |
| 73 | + hue = col_var, data = df, order = order, kind='bar') |
| 74 | + plt.savefig(results_dir + '/type_tiny_taxinet_barplot.pdf') |
| 75 | + plt.close() |
| 76 | + |
0 commit comments