forked from AI4Finance-Foundation/FinRL_Crypto
-
Notifications
You must be signed in to change notification settings - Fork 0
/
function_finance_metrics.py
827 lines (687 loc) · 25.4 KB
/
function_finance_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
"""
This code contains several functions that are used to calculate various metrics for a machine learning finance project.
A few examples of many:
compute_data_points_per_year(timeframe) computes the number of data points per year based on the given timeframe.
aggregate_performance_ndarray(drl_rets_arr, factor) and aggregate_performance_array(drl_rets_arr, factor)
are used to aggregate performance measures such as annual return, annual volatility, Sharpe ratio, and maximum drawdown.
proba_density_function(x) returns the probability density function of the given variable x.
mean_confidence_interval(data, confidence=0.95) returns the mean and the corresponding confidence interval of the
given data.
plot_pdf(sharpe_list_drl, sharpe_hodl, name, if_range_hodl=False)
plots the probability density function of the sharpe ratio for the provided lists and saves it with the given name.
Etcetera... take your pick
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as ss
import statsmodels.tsa.stattools as sts
import warnings
import scipy.stats
# default no. of trading days in a year, 252.
trading_days = 365
def compute_data_points_per_year(timeframe):
if timeframe == '1m':
data_points_per_year = 60 * 24 * 365
elif timeframe == '5m':
data_points_per_year = 12 * 24 * 365
elif timeframe == '10m':
data_points_per_year = 6 * 24 * 365
elif timeframe == '30m':
data_points_per_year = 2 * 24 * 365
elif timeframe == '1h':
data_points_per_year = 24 * 365
elif timeframe == '1d':
data_points_per_year = 365
else:
raise ValueError('Timeframe not supported yet, please manually add!')
return data_points_per_year
def aggregate_performance_ndarray(drl_rets_arr, factor):
annual_ret = annualized_pct_return(1 + drl_rets_arr[-1], factor=factor)
annual_vol = calc_annualized_volatility(drl_rets_arr, factor=factor)
sharpe_rat = sharpe_iid(drl_rets_arr, bench=0, factor=factor, log=False)
sharpe_rat = sharpe_iid_rolling(drl_rets_arr, 10, 10, bench=0, factor=1, log=False)
max_dd = max_drawdown_ndarray(drl_rets_arr)
return annual_ret, annual_vol, sharpe_rat, max_dd
def aggregate_performance_array(drl_rets_arr, factor):
annual_ret = annual_geometric_returns(drl_rets_arr, ann_factor=365, log=False)
annual_vol = calc_annualized_volatility(drl_rets_arr, factor=factor)
sharpe_rat, vol = sharpe_iid(drl_rets_arr, bench=0, factor=1, log=False)
max_dd = max_drawdown_single(drl_rets_arr, 10)
return annual_ret, annual_vol, sharpe_rat, vol
def proba_density_function(x):
mean = np.mean(x)
std = np.std(x)
y_out = 1 / (std * np.sqrt(2 * np.pi)) * np.exp(- (x - mean) ** 2 / (2 * std ** 2))
return y_out
def mean_confidence_interval(data, confidence=0.95):
a = 1.0 * np.array(data)
n = len(data)
m, se = np.mean(a), scipy.stats.sem(a)
h = se * scipy.stats.t.ppf((1 + confidence) / 2., n - 1)
return m, h
def plot_pdf(sharpe_list_drl, sharpe_hodl, name, if_range_hodl=False):
global sharpe_list_hodl, y_eqw
sharpe_list_drl = sorted(sharpe_list_drl)
y_drl = proba_density_function(np.array(sharpe_list_drl))
if if_range_hodl:
sharpe_list_hodl = sorted(sharpe_hodl)
y_eqw = proba_density_function(np.array(sharpe_list_hodl))
plt.style.use('seaborn')
plt.figure(figsize=(6, 6))
plt.plot(sharpe_list_drl, y_drl, color='red', linestyle='dashed')
if if_range_hodl:
plt.plot(sharpe_list_hodl, y_eqw, color='blue', linestyle='dashed')
plt.axvline(x=np.mean(sharpe_list_drl), color='r', linestyle='-', label='DRL avg. Sharpe ratio')
if if_range_hodl:
plt.axvline(x=np.mean(sharpe_list_hodl), color='b', linestyle='-', label='HODL avg. Sharpe ratio')
else:
plt.axvline(x=sharpe_hodl, color='b', linestyle='-', label='HODL avgVal. Sharpe ratio')
plt.legend(loc="upper left", shadow=True)
plt.xlabel('Sharpe ratio')
plt.ylabel('Density')
plt.scatter(sharpe_list_drl, y_drl, marker='o', s=25, color='red')
if if_range_hodl:
plt.scatter(sharpe_list_hodl, y_eqw, marker='x', s=25, color='blue')
plt.savefig(name + ".png")
def compute_eqw(price_ary, indx1, indx2):
# compute eqw
initial_prices = price_ary[0, :]
equal_weight = np.array([1e6 / len(initial_prices) / initial_prices[i] for i in range(len(initial_prices))])
account_value_eqw = []
for i in range(0, price_ary.shape[0]):
account_value_eqw.append(np.sum(equal_weight * price_ary[i]))
eqw_cumrets = [x / account_value_eqw[0] - 1 for x in account_value_eqw]
account_value_eqw = np.array(account_value_eqw)
eqw_rets_tmp = account_value_eqw[:-1] / account_value_eqw[1:] - 1
return account_value_eqw, eqw_rets_tmp, eqw_cumrets
def calc_annualized_ret(cum_ret, points_per_year):
dataset_size = np.shape(cum_ret)[0]
factor = points_per_year / dataset_size
annual_ret = cum_ret[-1] * factor
return np.round(annual_ret * 100, 2)
def calc_annualized_volatility(rets, factor=1):
return rets.std() * np.sqrt(factor)
################################################# PBO METRICS ########################################
def _is_pandas(d):
return isinstance(d, pd.DataFrame) or isinstance(d, pd.Series)
def _reindex_dates(source, target):
"""
Reindex source data with target's index
Parameters
----------
source : TYPE
data to reindex
target : TYPE
target data
Returns
-------
TYPE
"""
if _is_pandas(source) and _is_pandas(target):
result = source.reindex(target.index)
else:
result = source
# assert no NaN
nan_flag = np.isnan(result)
nan_check = nan_flag.sum()
assert nan_check == 0, "Unmatched dates, NaN #{}".format(nan_check)
return result
def log_excess(rtns, bench, debug=True):
"""
Calculate excess return given two log return series.
Args:
rtns (TYPE): log returns
bench (TYPE): benchmark log returns
Returns:
Log excess returns
"""
# convert to pct space then back to log
# if isinstance(rtns, pd.Series) or isinstance(rtns, pd.DataFrame):
# x = np.exp(rtns).sub(np.exp(bench), axis='index')
# else:
# x = np.exp(rtns) - np.exp(bench)
# y = 1 + x
# if debug:
# valid_log = y > 0
# invalid_log = len(y) - np.sum(valid_log)
# debug_test = np.allclose(invalid_log, 0)
# # uncomment below to print count
# # print('log_excess debug: less than or close to 0 total = ',
# # invalid_log)
# assert(debug_test), 'Log(0 or -ve) count = {}'.format(invalid_log)
# excess = np.log(y)
# first match return dates
matched_bench = _reindex_dates(bench, rtns)
excess = rtns - matched_bench
return excess
def pct_to_log_excess(returns, bench):
"""
Convert percentage returns to log returns, then compute log excess.
Parameters
----------
returns : TYPE
bench : TYPE
Returns
-------
TYPE
"""
rtns_log = pct_to_log_return(returns)
bench_log = pct_to_log_return(bench)
return log_excess(rtns_log, bench_log)
def returns_gmean(returns):
"""
Calculates geometric average returns from a given returns series.
"""
if isinstance(returns, pd.DataFrame) or isinstance(returns, pd.Series):
returns = returns.fillna(0)
else:
returns = np.nan_to_num(returns)
return ss.gmean(1 + returns, axis=0) - 1
def log_returns(prices, n=1, fillna=False):
"""
Log returns from prices. Preserves existing nan data when holidays are
not aligned, i.e. return for date after an nan observation is done versus
the last non-nan date.
Parameters
----------
prices : TYPE
n : int, optional
fillna : bool, optional
If True fill first nan with 0.
Returns
-------
TYPE
"""
prices = pd.DataFrame(prices)
# keep null masks
mask = prices.isnull()
# ffill prices for calculating returns, one way to handle holiday calendars
# the ffilled cells will be reset back to nan using the mask saved above.
prices = prices.ffill()
rtns = np.log(prices) - np.log(prices.shift(n))
rtns.values[mask.values] = np.nan
# print(rtns)
if fillna:
# rtns.fillna(0, inplace=True)
# only fill first period nan
if _is_pandas(rtns):
rtns.values[0] = 0.0
else:
rtns[0] = 0.0
return rtns
def pct_to_log_return(pct_returns, fillna=True):
if _is_pandas(pct_returns):
if fillna:
pct_returns = pct_returns.fillna(0)
return np.log(1 + pct_returns + 1e-8)
else:
if fillna:
pct_returns = np.nan_to_num(pct_returns)
return np.log(1 + pct_returns + 1e-8)
def log_to_pct_return(log_returns):
return np.exp(log_returns) - 1
def maxzero(x):
return np.maximum(x, 0)
def LPM(returns, target_rtn, moment):
"""
Lower partial moment.
Parameters
----------
returns : TYPE
log returns
target_rtn : TYPE
moment : TYPE
Returns
-------
TYPE
"""
excess = -log_excess(returns, target_rtn)
if _is_pandas(returns):
# adj_returns = (target_rtn - returns).apply(maxzero)
adj_returns = excess.clip(lower=0)
return np.power(adj_returns, moment).mean()
else:
adj_returns = np.ndarray.clip(excess, min=0)
return np.nanmean(np.power(adj_returns, moment), axis=0)
def kappa(returns, target_rtn, moment, log=True):
"""
Geometric mean should be used when returns are percentage returns.
Arithmetic mean should be used when returns are log returns.
"""
# validate_return_type(return_type)
if log:
excess = log_excess(returns, target_rtn)
else:
# mean = returns_gmean(returns)
# convert to log return then to log excess
excess = pct_to_log_excess(returns, target_rtn)
returns = pct_to_log_return(returns)
target_rtn = pct_to_log_return(target_rtn)
if _is_pandas(excess):
mean = excess.mean()
else:
mean = np.nanmean(excess)
kappa = mean / np.power(
LPM(returns, target_rtn, moment=moment), 1.0 / moment
)
return kappa
def kappa3(returns, target_rtn=0, log=True):
"""
Kappa 3
"""
return kappa(returns, target_rtn=target_rtn, moment=3, log=log)
def sortino(returns, target_rtn=0, factor=1, log=True):
"""
Sortino I.I.D ratio caluclated using Lower Partial Moment.
Result should be the same as `sortino_iid`.
"""
# validate_return_type(return_type)
if not log:
excess = pct_to_log_excess(returns, target_rtn)
returns = pct_to_log_return(returns)
else:
excess = log_excess(returns, target_rtn)
if _is_pandas(returns):
# return (returns.mean() - target_rtn) / \
return (
excess.mean()
/ np.sqrt(LPM(returns, target_rtn, 2))
* np.sqrt(factor)
)
else:
# return np.nanmean(returns - target_rtn) / \
return (
np.nanmean(excess)
/ np.sqrt(LPM(returns, target_rtn, 2))
* np.sqrt(factor)
)
def sortino_iid(rtns, bench=0, factor=1, log=True):
# validate_return_type(return_type)
if isinstance(rtns, np.ndarray):
rtns = pd.DataFrame(rtns)
if log:
excess = log_excess(rtns, bench)
else:
excess = pct_to_log_excess(rtns, bench)
neg_rtns = excess.where(cond=lambda x: x < 0)
neg_rtns.fillna(0, inplace=True)
semi_std = np.sqrt(neg_rtns.pow(2).mean())
# print(excess, semi_std, np.std(neg_rtns, ddof=0))
return np.sqrt(factor) * excess.mean() / semi_std
# def rolling_lpm(returns, target_rtn, moment, window):
# adj_returns = returns - target_rtn
# adj_returns[adj_returns > 0] = 0
# return pd.rolling_mean(adj_returns**moment,
# window=window, min_periods=window)
# def rolling_sortino(returns, window, target_rtn=0):
# '''
# This is ~150x faster than using rolling_ratio which uses rolling_apply
# '''
# num = pd.rolling_mean(returns, window=window,
# min_periods=window) - target_rtn
# denom = np.sqrt(rolling_lpm(returns, target_rtn,
# moment=2, window=window))
# return num / denom
# def sharpe(returns, bench_rtn=0):
# excess = returns - bench_rtn
# if isinstance(excess, pd.DataFrame) or isinstance(excess, pd.Series):
# return excess.mean() / excess.std(ddof=1)
# else:
# return np.nanmean(excess) / np.nanstd(excess, ddof=1)
def match_rtn_dates(rtns, bench):
if not (isinstance(rtns, pd.Series) or isinstance(rtns, pd.DataFrame)):
# no need to reindex
return bench
if _is_pandas(bench):
bench = bench.reindex(rtns.index)
# check
expected = len(rtns)
check = bench.count()
if expected != check:
# warning
warnings.warn(
"Returns and benchmark length not matching, "
"{} vs {}".format(expected, check)
)
return bench
else:
return bench
def sharpe_iid(rtns, bench=0, factor=1, log=True):
"""IID Sharpe ratio, percent returns are converted to log return.
Parameters
----------
rtns : TYPE
bench : int, optional
factor : int, optional
log : bool, optional
Returns
-------
TYPE
"""
if log:
excess = log_excess(rtns, bench)
if not log:
excess = pct_to_log_excess(rtns, bench)
# print('excess: ', excess)
if _is_pandas(rtns):
excess_mean = excess.mean()
sharpe = np.sqrt(factor) * excess_mean / excess.std(ddof=1)
vol = excess.std(ddof=1)
return sharpe, vol
else:
# numpy way
excess_mean = np.nanmean(excess, axis=0)
sharpe = np.sqrt(factor) * excess_mean / np.nanstd(excess, axis=0, ddof=1)
vol = np.nanstd(excess, axis=0, ddof=1)
return sharpe, vol
def sharpe_iid_rolling(
rtns, window: int, min_periods: int, bench=0, factor=1, log=True
):
"""
Rolling sharpe ratio, unadjusted by time aggregation.
"""
# validate_return_type(return_type)
if log:
excess = log_excess(rtns, bench)
else:
excess = pct_to_log_excess(rtns, bench)
roll = excess.rolling(window=window, min_periods=min_periods)
return np.sqrt(factor) * roll.mean() / roll.std(ddof=1)
def sharpe_iid_adjusted(rtns, bench=0, factor=1, log=True):
"""
Adjusted Sharpe Ratio, acount for skew and kurtosis in return series.
Pezier and White (2006) adjusted sharpe ratio.
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi42ZKgg_TOAhVFbhQKHSXPDY0QFggcMAA&url=http%3A%2F%2Fwww.icmacentre.ac.uk%2Fpdf%2Fdiscussion%2FDP2006-10.pdf&usg=AFQjCNF9axYf4Gbz4TVdJUdM8o2M2rz-jg&sig2=pXHZ7M-n-PtNd2d29xhRBw
Parameters:
rtns:
returns dataframe. Default should be log returns
bench: def calculate_sharpe(df):
df['daily_return'] = df['account_value'].pct_change(1)
if df['daily_return'].std() !=0:
sharpe = (252**0.5)*df['daily_return'].mean()/ \
df['daily_return'].std()
return sharpe
else:
return 0
benchmark return
factor:
time aggregation factor, default 1, i.e. not adjusted.
log (bool, optional):
log return or not, default True
Deleted Parameters:
return_type: {'log', 'pct'}, return series type, log or arithmetic
percentages.
Returns:
TYPE
"""
sr = sharpe_iid(rtns, bench=bench, factor=1, log=log)
# print(sr)
if _is_pandas(rtns):
skew = rtns.skew()
excess_kurt = rtns.kurtosis()
else:
skew = ss.skew(rtns, bias=False, nan_policy="omit")
excess_kurt = ss.kurtosis(
rtns, bias=False, fisher=True, nan_policy="omit"
)
return adjusted_sharpe(sr, skew, excess_kurt) * np.sqrt(factor)
def adjusted_sharpe(sr, skew, excess_kurtosis):
"""
Adjusted Sharpe Ratio, acount for skew and kurtosis in return series.
Pezier and White (2006) adjusted sharpe ratio.
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi42ZKgg_TOAhVFbhQKHSXPDY0QFggcMAA&url=http%3A%2F%2Fwww.icmacentre.ac.uk%2Fpdf%2Fdiscussion%2FDP2006-10.pdf&usg=AFQjCNF9axYf4Gbz4TVdJUdM8o2M2rz-jg&sig2=pXHZ7M-n-PtNd2d29xhRBw
Parameters:
sr :
sharpe ratio
skew :
return series skew
excess_kurtosis :
return series excess kurtosis
"""
# return sr * (1 + (skew / 6.0) * sr + (kurtosis - 3) / 24.0 * sr**2)
return sr * (1 + (skew / 6.0) * sr + excess_kurtosis / 24.0 * sr ** 2)
def sharpe_non_iid(rtns, bench=0, q=trading_days, p_critical=0.05, log=True):
"""
Return Sharpe Ratio adjusted for auto-correlation, iff Ljung-Box test
indicates that the return series exhibits auto-correlation. Based on
Andrew Lo (2002).
Parameters:
rtns:
return series
bench:
risk free rate, default 0
q:
time aggregation frequency, e.g. 12 for monthly to annual.
Default 252.
p_critical:
critical p-value to reject Ljung-Box Null, default 0.05.
log (bool, optional):
True if rtns is log returns, default True
Deleted Parameters:
return_type:
{'log', 'pct'}, return series type, log or arithmetic
percentages.
Returns:
TYPE
"""
if type(q) is not np.int64 or type(q) is not np.int32:
q = np.round(q, 0).astype(np.int64)
if len(rtns) <= q:
# raise AssertionError('No. of returns [{}] must be greated than {}'
# .format(len(rtns), q))
warnings.warn(
"Sharpe Non-IID: No. of returns [{}] must be greater"
" than {}. NaN returned.".format(len(rtns), q)
)
dim = rtns.shape
if len(dim) < 2:
return np.nan
else:
res = np.empty((1, dim[1]))
res[:] = np.nan
return res
sr = sharpe_iid(rtns, bench=bench, factor=1, log=log)
if not _is_pandas(rtns):
adj_factor, pval = sharpe_autocorr_factor(rtns, q=q)
if pval < p_critical:
# reject Ljung-Box Null, there is serial correlation
return sr * adj_factor
else:
return sr * np.sqrt(q)
else:
if isinstance(rtns, pd.Series):
tests = [sharpe_autocorr_factor(rtns.dropna().values, q=q)]
else:
tests = [
sharpe_autocorr_factor(rtns[col].dropna().values, q=q)
for col in rtns.columns
]
factors = [
adj_factor if pval < p_critical else np.sqrt(q)
for adj_factor, pval in tests
]
if isinstance(rtns, pd.Series):
out = sr * factors[0]
else:
res = pd.Series(factors, index=rtns.columns)
out = res.multiply(sr)
return out
def sharpe_autocorr_factor(returns, q):
"""
Auto-correlation correction for Sharpe ratio time aggregation based on
Andrew Lo's 2002 paper.
Link:
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj5wf2OjO_OAhWDNxQKHT0wB3EQFggeMAA&url=http%3A%2F%2Fedge-fund.com%2FLo02.pdf&usg=AFQjCNHbSz0LDZxFXm6pmBQukCfAYd0K7w&sig2=zQgZAN22RQcQatyP68VKmQ
Parameters:
returns :
return sereis
q :
time aggregation factor, e.g. 12 for monthly to annual,
252 for daily to annual
Returns:
factor : time aggregation factor
p-value : p-value for Ljung-Box serial correation test.
"""
# Ljung-Box Null: data is independent, i.e. no auto-correlation.
# smaller p-value would reject the Null, i.e. there is auto-correlation
acf, _, pval = sts.acf(returns, adjusted=False, nlags=q, qstat=True)
term = [(q - (k + 1)) * acf[k + 1] for k in range(q - 2)]
factor = q / np.sqrt(q + 2 * np.sum(term))
return factor, pval[-2]
def annual_geometric_returns(rtns, ann_factor=trading_days, log=True):
"""
Take a return series and produce annualized geometric return.
Args:
rtns (TYPE):
return series, log or pct returns
ann_factor (TYPE, optional):
annual day count factor
log (bool, optional):
True if log return is given. Default True.
Returns:
float, annualized geometric return
"""
if not log:
rtns = pct_to_log_return(rtns)
total_rtn = np.exp(rtns.sum())
geo = np.power(total_rtn, ann_factor / len(rtns)) - 1
return geo
def annualized_pct_return(total_return, factor=1):
"""
Parameters:
total_return:
total pct equity curve, e.g. if return is +50%, then this
should be 1.5 (e.g. 1. + .5)
days :
number of days in period.
ann_factor :
number of days in a year
Returns:
Annualized percentage return.
"""
total_return += 1
ann = np.power(total_return, factor) - 1
return ann
def annualized_log_return(total_return, days, ann_factor=trading_days):
"""
Parameters:
total_return:
total log return, e.g. if return is +50%, then this should be 0.5,
e.g. not 1.5.
days :
number of days in period.
ann_factor :
number of days in a year
Returns:
Annualized percentage return.
"""
years = days / ann_factor
ann = total_return / years
return ann
def tail_ratio(returns, tail_prob=5):
"""
Determines the ratio between the right (95%) and left tail (5%).
For example, a ratio of 0.25 means that losses are four times
as bad as profits.
Parameters
----------
returns : pd.Series
asset returns
tail_prob : int, optional
in the range of [0, 100], to match numpy.nanpercentile()
Returns
-------
float
tail_prob ratio
"""
if _is_pandas(returns):
tail_prob /= 100.0
top = returns.quantile(q=1 - tail_prob)
bottom = returns.quantile(q=tail_prob)
return np.abs(top / bottom)
else:
return np.abs(np.nanpercentile(returns, 100 - tail_prob)) / np.abs(
np.nanpercentile(returns, tail_prob)
)
def max_drawdown_single(rets, factor):
rets = np.delete(rets, 0)
rets = pd.Series(rets)
Roll_Max = rets.rolling(factor, min_periods=1).max()
inter_point_dd = rets / Roll_Max - 1.0
max_interpoint_dd = inter_point_dd.rolling(factor, min_periods=1).min()
return max_interpoint_dd
def max_drawdown_ndarray(array):
max_dd_list = []
for i in range(np.shape(array)[1]):
max_dd = max_drawdown_single(array[:, i])
max_dd_list.append(max_dd)
return max_dd_list
def max_drawdown(equity):
return drawdown(equity).min()
def max_drawdown_from_rtns(returns, log=True):
return drawdown_from_rtns(returns, log=log).min()
def drawdown(equity) -> pd.DataFrame:
"""
Drawdown curve.
Args:
equity (DataFrame or Series/Array like):
equity curve
Returns:
drawdown curve in percentage terms from peaks.
"""
if isinstance(equity, np.ndarray) or isinstance(equity, list):
equity = pd.DataFrame(equity)
highs = equity.expanding().max()
dd = equity / highs - 1.0
return dd
def drawdown_from_rtns(returns, log=True):
"""
Drowdown curve from returns.
Args:
returns (array like):
asset returns
log (bool, optional):
log returns or not. Default True
Returns:
TYPE
"""
if log:
equity = np.exp(returns.cumsum())
else:
equity = (1 + returns).cumprod()
return drawdown(equity)
def calmar_ratio(returns, factor=trading_days, log=True):
"""
CALMAR ratio: annualized return over max drawdown, for last 36
months.
See Wikipedia: https://en.wikipedia.org/wiki/Calmar_ratio
Parameters:
returns :
return series
Returns:
Calmar ratio, calculated with normal percentage returns.
"""
if not log:
returns = pct_to_log_return(returns)
num_years = float(len(returns)) / factor
if not log:
cum_return = (1 + returns).cumprod()
else:
# log return
cum_return = np.exp(returns.cumsum())
if isinstance(cum_return, np.ndarray) or isinstance(cum_return, list):
cum_return = pd.Series(cum_return)
annual_return = np.power(cum_return.values[-1], 1 / num_years) - 1
# max_dd = np.abs(get_drawdown(cum_return)['drawdown'].min())
max_dd = np.abs(drawdown(cum_return).min())
return annual_return / max_dd
def write_metrics_to_results(name, file_path, drl_cumrets, drl_annual_ret, drl_annual_vol, drl_sharpe_rat, vol,
append_write):
with open(file_path, append_write) as f:
f.write('\n################################## ' + name + ' ####################################\n')
f.write('Cumulative return: ' + str(drl_cumrets[-1] * 100) + '\n')
f.write('Annual return: ' + str(drl_annual_ret) + '\n')
f.write('Annual volatility: ' + str(drl_annual_vol) + '\n')
f.write('Sharpe ratio: ' + str(drl_sharpe_rat) + '\n')
f.write('Volatiltiy: ' + "{:e}".format(vol) + '\n')