$$L_{z}=\sum ^{V}{v=1}L{z}^{v}=\sum ^{V}_{v=1}\left| X^{m}-D^{m}\left( E^{m}\left( X^{m}\right) \right) \right| _{2}^{2}$$
$$\mathbf{W}{ij}^{F} = \begin{cases} 1 & \text{if } i = j, \ p{i}^{F} \cdot p_{j}^{F} & \text{if } i \neq j \text{ and } p_{i}^{F} \cdot p_{j}^{F} \geq \tau, \ 0 & \text{otherwise,} \end{cases}$$
$$\mathcal{L}{F} = - \mathbf{W}{ii}^{F} \log \left( \frac{\exp(S_{ii}^{F})}{\sum \exp(S_{ij}^{F})} \right)\sum_{j=1, j \neq i}^{N} -\mathbf{W}{ij}^{F} \log \left( \frac{\exp(S{ij}^{F})}{\sum \exp(S_{ij}^{F})} \right).$$
$$\mathcal{L}{FAC} = \frac{1}{2} | S^{F} - I |{2}^{2}$$
$$\mathbf{W}{ij}^{kk^{'}} = \begin{cases} 1 & \text{if } i = j, \ p{i}^{k} \cdot p_{j}^{k^{'}} & \text{if } i \neq j \text{ and } p_{i}^{k} \cdot p_{j}^{k^{'}} \geq \tau, \ 0 & \text{otherwise,} \end{cases}$$
$$\mathcal{L}{causal} = \sum{\substack{k, k' \in S \ k < k'}} \left( -\mathbf{W}{ii}^{kk^{'}} \log \left( \frac{\exp(S{ii}^{kk^{'}})}{\sum \exp(S_{ij}^{kk^{'}})} \right)- \sum_{j=1, j \neq i}^{N} \mathbf{W}{ij}^{kk^{'}} \log \left( \frac{\exp(S{ij}^{kk^{'}})}{\sum \exp(S_{ij}^{kk^{'}})} \right) \right),$$
$$\mathcal{L}{align} = \frac{1}{\binom{2}{\lvert S \rvert}} \sum{\substack{k, k' \in S \ k < k'}} | \mathbf{W}^{F} - \mathbf{W}^{kk^{'}} |_{2}^{2},$$
$$\mathcal{L} = \mathcal{L}{z} + \alpha \mathcal{L}{F} + \beta \mathcal{L}{causal} + \mu \mathcal{L}{align},$$
$$U=\sum ^{V}{v=1}\dfrac{e^{w^{v}{\alpha}}}{\sum ^{V}{k=1}e^{w^{k}{\alpha}}}H^{v }$$