forked from eosphoros-ai/DB-GPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
729 lines (635 loc) · 22.2 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
import functools
import os
import platform
import re
import shutil
import subprocess
import urllib.request
from enum import Enum
from typing import Callable, List, Optional, Tuple
from urllib.parse import quote, urlparse
import setuptools
from setuptools import find_packages
with open("README.md", mode="r", encoding="utf-8") as fh:
long_description = fh.read()
IS_DEV_MODE = os.getenv("IS_DEV_MODE", "true").lower() == "true"
# If you modify the version, please modify the version in the following files:
# dbgpt/_version.py
DB_GPT_VERSION = os.getenv("DB_GPT_VERSION", "0.5.2")
BUILD_NO_CACHE = os.getenv("BUILD_NO_CACHE", "true").lower() == "true"
LLAMA_CPP_GPU_ACCELERATION = (
os.getenv("LLAMA_CPP_GPU_ACCELERATION", "true").lower() == "true"
)
BUILD_FROM_SOURCE = os.getenv("BUILD_FROM_SOURCE", "false").lower() == "true"
BUILD_FROM_SOURCE_URL_FAST_CHAT = os.getenv(
"BUILD_FROM_SOURCE_URL_FAST_CHAT", "git+https://github.com/lm-sys/FastChat.git"
)
BUILD_VERSION_OPENAI = os.getenv("BUILD_VERSION_OPENAI")
def parse_requirements(file_name: str) -> List[str]:
with open(file_name) as f:
return [
require.strip()
for require in f
if require.strip() and not require.startswith("#")
]
def get_latest_version(package_name: str, index_url: str, default_version: str):
python_command = shutil.which("python")
if not python_command:
python_command = shutil.which("python3")
if not python_command:
print("Python command not found.")
return default_version
command = [
python_command,
"-m",
"pip",
"index",
"versions",
package_name,
"--index-url",
index_url,
]
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if result.returncode != 0:
print("Error executing command.")
print(result.stderr.decode())
return default_version
output = result.stdout.decode()
lines = output.split("\n")
for line in lines:
if "Available versions:" in line:
available_versions = line.split(":")[1].strip()
latest_version = available_versions.split(",")[0].strip()
return latest_version
return default_version
def encode_url(package_url: str) -> str:
parsed_url = urlparse(package_url)
encoded_path = quote(parsed_url.path)
safe_url = parsed_url._replace(path=encoded_path).geturl()
return safe_url, parsed_url.path
def cache_package(package_url: str, package_name: str, is_windows: bool = False):
safe_url, parsed_url = encode_url(package_url)
if BUILD_NO_CACHE:
return safe_url
from pip._internal.utils.appdirs import user_cache_dir
filename = os.path.basename(parsed_url)
cache_dir = os.path.join(user_cache_dir("pip"), "http", "wheels", package_name)
os.makedirs(cache_dir, exist_ok=True)
local_path = os.path.join(cache_dir, filename)
if not os.path.exists(local_path):
temp_path = local_path + ".tmp"
if os.path.exists(temp_path):
os.remove(temp_path)
try:
print(f"Download {safe_url} to {local_path}")
urllib.request.urlretrieve(safe_url, temp_path)
shutil.move(temp_path, local_path)
finally:
if os.path.exists(temp_path):
os.remove(temp_path)
return f"file:///{local_path}" if is_windows else f"file://{local_path}"
class SetupSpec:
def __init__(self) -> None:
self.extras: dict = {}
self.install_requires: List[str] = []
setup_spec = SetupSpec()
class AVXType(Enum):
BASIC = "basic"
AVX = "AVX"
AVX2 = "AVX2"
AVX512 = "AVX512"
@staticmethod
def of_type(avx: str):
for item in AVXType:
if item._value_ == avx:
return item
return None
class OSType(Enum):
WINDOWS = "win"
LINUX = "linux"
DARWIN = "darwin"
OTHER = "other"
@functools.cache
def get_cpu_avx_support() -> Tuple[OSType, AVXType]:
system = platform.system()
os_type = OSType.OTHER
cpu_avx = AVXType.BASIC
env_cpu_avx = AVXType.of_type(os.getenv("DBGPT_LLAMA_CPP_AVX"))
if "windows" in system.lower():
os_type = OSType.WINDOWS
output = "avx2"
print("Current platform is windows, use avx2 as default cpu architecture")
elif system == "Linux":
os_type = OSType.LINUX
result = subprocess.run(
["lscpu"], stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
output = result.stdout.decode()
elif system == "Darwin":
os_type = OSType.DARWIN
result = subprocess.run(
["sysctl", "-a"], stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
output = result.stdout.decode()
else:
os_type = OSType.OTHER
print("Unsupported OS to get cpu avx, use default")
return os_type, env_cpu_avx if env_cpu_avx else cpu_avx
if "avx512" in output.lower():
cpu_avx = AVXType.AVX512
elif "avx2" in output.lower():
cpu_avx = AVXType.AVX2
elif "avx " in output.lower():
# cpu_avx = AVXType.AVX
pass
return os_type, env_cpu_avx if env_cpu_avx else cpu_avx
def get_cuda_version_from_torch():
try:
import torch
return torch.version.cuda
except:
return None
def get_cuda_version_from_nvcc():
try:
output = subprocess.check_output(["nvcc", "--version"])
version_line = [
line for line in output.decode("utf-8").split("\n") if "release" in line
][0]
return version_line.split("release")[-1].strip().split(",")[0]
except:
return None
def get_cuda_version_from_nvidia_smi():
try:
output = subprocess.check_output(["nvidia-smi"]).decode("utf-8")
match = re.search(r"CUDA Version:\s+(\d+\.\d+)", output)
if match:
return match.group(1)
else:
return None
except:
return None
def get_cuda_version() -> str:
try:
cuda_version = get_cuda_version_from_torch()
if not cuda_version:
cuda_version = get_cuda_version_from_nvcc()
if not cuda_version:
cuda_version = get_cuda_version_from_nvidia_smi()
return cuda_version
except Exception:
return None
def _build_wheels(
pkg_name: str,
pkg_version: str,
base_url: str = None,
base_url_func: Callable[[str, str, str], str] = None,
pkg_file_func: Callable[[str, str, str, str, OSType], str] = None,
supported_cuda_versions: List[str] = ["11.7", "11.8"],
) -> Optional[str]:
"""
Build the URL for the package wheel file based on the package name, version, and CUDA version.
Args:
pkg_name (str): The name of the package.
pkg_version (str): The version of the package.
base_url (str): The base URL for downloading the package.
base_url_func (Callable): A function to generate the base URL.
pkg_file_func (Callable): build package file function.
function params: pkg_name, pkg_version, cuda_version, py_version, OSType
supported_cuda_versions (List[str]): The list of supported CUDA versions.
Returns:
Optional[str]: The URL for the package wheel file.
"""
os_type, _ = get_cpu_avx_support()
cuda_version = get_cuda_version()
py_version = platform.python_version()
py_version = "cp" + "".join(py_version.split(".")[0:2])
if os_type == OSType.DARWIN or not cuda_version:
return None
if cuda_version not in supported_cuda_versions:
print(
f"Warnning: {pkg_name} supported cuda version: {supported_cuda_versions}, replace to {supported_cuda_versions[-1]}"
)
cuda_version = supported_cuda_versions[-1]
cuda_version = "cu" + cuda_version.replace(".", "")
os_pkg_name = "linux_x86_64" if os_type == OSType.LINUX else "win_amd64"
if base_url_func:
base_url = base_url_func(pkg_version, cuda_version, py_version)
if base_url and base_url.endswith("/"):
base_url = base_url[:-1]
if pkg_file_func:
full_pkg_file = pkg_file_func(
pkg_name, pkg_version, cuda_version, py_version, os_type
)
else:
full_pkg_file = f"{pkg_name}-{pkg_version}+{cuda_version}-{py_version}-{py_version}-{os_pkg_name}.whl"
if not base_url:
return full_pkg_file
else:
return f"{base_url}/{full_pkg_file}"
def torch_requires(
torch_version: str = "2.0.1",
torchvision_version: str = "0.15.2",
torchaudio_version: str = "2.0.2",
):
torch_pkgs = [
f"torch=={torch_version}",
f"torchvision=={torchvision_version}",
f"torchaudio=={torchaudio_version}",
]
torch_cuda_pkgs = []
os_type, _ = get_cpu_avx_support()
if os_type != OSType.DARWIN:
cuda_version = get_cuda_version()
if cuda_version:
supported_versions = ["11.7", "11.8"]
# torch_url = f"https://download.pytorch.org/whl/{cuda_version}/torch-{torch_version}+{cuda_version}-{py_version}-{py_version}-{os_pkg_name}.whl"
# torchvision_url = f"https://download.pytorch.org/whl/{cuda_version}/torchvision-{torchvision_version}+{cuda_version}-{py_version}-{py_version}-{os_pkg_name}.whl"
torch_url = _build_wheels(
"torch",
torch_version,
base_url_func=lambda v, x, y: f"https://download.pytorch.org/whl/{x}",
supported_cuda_versions=supported_versions,
)
torchvision_url = _build_wheels(
"torchvision",
torchvision_version,
base_url_func=lambda v, x, y: f"https://download.pytorch.org/whl/{x}",
supported_cuda_versions=supported_versions,
)
torch_url_cached = cache_package(
torch_url, "torch", os_type == OSType.WINDOWS
)
torchvision_url_cached = cache_package(
torchvision_url, "torchvision", os_type == OSType.WINDOWS
)
torch_cuda_pkgs = [
f"torch @ {torch_url_cached}",
f"torchvision @ {torchvision_url_cached}",
f"torchaudio=={torchaudio_version}",
]
setup_spec.extras["torch"] = torch_pkgs
setup_spec.extras["torch_cpu"] = torch_pkgs
setup_spec.extras["torch_cuda"] = torch_cuda_pkgs
def llama_cpp_python_cuda_requires():
cuda_version = get_cuda_version()
device = "cpu"
if not cuda_version:
print("CUDA not support, use cpu version")
return
if not LLAMA_CPP_GPU_ACCELERATION:
print("Disable GPU acceleration")
return
# Supports GPU acceleration
device = "cu" + cuda_version.replace(".", "")
os_type, cpu_avx = get_cpu_avx_support()
print(f"OS: {os_type}, cpu avx: {cpu_avx}")
supported_os = [OSType.WINDOWS, OSType.LINUX]
if os_type not in supported_os:
print(
f"llama_cpp_python_cuda just support in os: {[r._value_ for r in supported_os]}"
)
return
cpu_device = ""
if cpu_avx == AVXType.AVX2 or cpu_avx == AVXType.AVX512:
cpu_device = "avx"
else:
cpu_device = "basic"
device += cpu_device
base_url = "https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui"
llama_cpp_version = "0.2.10"
py_version = "cp310"
os_pkg_name = "manylinux_2_31_x86_64" if os_type == OSType.LINUX else "win_amd64"
extra_index_url = f"{base_url}/llama_cpp_python_cuda-{llama_cpp_version}+{device}-{py_version}-{py_version}-{os_pkg_name}.whl"
extra_index_url, _ = encode_url(extra_index_url)
print(f"Install llama_cpp_python_cuda from {extra_index_url}")
setup_spec.extras["llama_cpp"].append(f"llama_cpp_python_cuda @ {extra_index_url}")
def core_requires():
"""
pip install dbgpt or pip install "dbgpt[core]"
"""
setup_spec.extras["core"] = [
"aiohttp==3.8.4",
"chardet==5.1.0",
"importlib-resources==5.12.0",
"python-dotenv==1.0.0",
"cachetools",
"pydantic<2,>=1",
# For AWEL type checking
"typeguard",
]
# For DB-GPT python client SDK
setup_spec.extras["client"] = setup_spec.extras["core"] + [
"httpx",
"fastapi==0.98.0",
]
# Simple command line dependencies
setup_spec.extras["cli"] = setup_spec.extras["client"] + [
"prettytable",
"click",
"psutil==5.9.4",
"colorama==0.4.6",
"tomlkit",
]
# Just use by DB-GPT internal, we should find the smallest dependency set for run
# we core unit test.
# The dependency "framework" is too large for now.
setup_spec.extras["simple_framework"] = setup_spec.extras["cli"] + [
"jinja2",
"uvicorn",
"shortuuid",
# change from fixed version 2.0.22 to variable version, because other
# dependencies are >=1.4, such as pydoris is <2
"SQLAlchemy>=1.4,<3",
# for cache
"msgpack",
# for cache
# TODO: pympler has not been updated for a long time and needs to
# find a new toolkit.
"pympler",
"duckdb==0.8.1",
"duckdb-engine",
# lightweight python library for scheduling jobs
"schedule",
# For datasource subpackage
"sqlparse==0.4.4",
]
# TODO: remove fschat from simple_framework
if BUILD_FROM_SOURCE:
setup_spec.extras["simple_framework"].append(
f"fschat @ {BUILD_FROM_SOURCE_URL_FAST_CHAT}"
)
else:
setup_spec.extras["simple_framework"].append("fschat")
setup_spec.extras["framework"] = setup_spec.extras["simple_framework"] + [
"coloredlogs",
"seaborn",
# https://github.com/eosphoros-ai/DB-GPT/issues/551
"pandas==2.0.3",
"auto-gpt-plugin-template",
"gTTS==2.3.1",
"pymysql",
"jsonschema",
# TODO move transformers to default
# "transformers>=4.31.0",
"transformers>=4.34.0",
"alembic==1.12.0",
# for excel
"openpyxl==3.1.2",
"chardet==5.1.0",
"xlrd==2.0.1",
"aiofiles",
# for agent
"GitPython",
# For AWEL dag visualization, graphviz is a small package, also we can move it to default.
"graphviz",
]
def knowledge_requires():
"""
pip install "dbgpt[rag]"
"""
setup_spec.extras["rag"] = setup_spec.extras["vstore"] + [
"langchain>=0.0.286",
"spacy==3.5.3",
"chromadb==0.4.10",
"markdown",
"bs4",
"python-pptx",
"python-docx",
"pypdf",
"python-multipart",
"sentence-transformers",
]
def llama_cpp_requires():
"""
pip install "dbgpt[llama_cpp]"
"""
setup_spec.extras["llama_cpp"] = ["llama-cpp-python"]
llama_cpp_python_cuda_requires()
def _build_autoawq_requires() -> Optional[str]:
os_type, _ = get_cpu_avx_support()
if os_type == OSType.DARWIN:
return None
auto_gptq_version = get_latest_version(
"auto-gptq", "https://huggingface.github.io/autogptq-index/whl/cu118/", "0.5.1"
)
# eg. 0.5.1+cu118
auto_gptq_version = auto_gptq_version.split("+")[0]
def pkg_file_func(pkg_name, pkg_version, cuda_version, py_version, os_type):
pkg_name = pkg_name.replace("-", "_")
if os_type == OSType.DARWIN:
return None
os_pkg_name = (
"manylinux_2_17_x86_64.manylinux2014_x86_64.whl"
if os_type == OSType.LINUX
else "win_amd64.whl"
)
return f"{pkg_name}-{pkg_version}+{cuda_version}-{py_version}-{py_version}-{os_pkg_name}"
auto_gptq_url = _build_wheels(
"auto-gptq",
auto_gptq_version,
base_url_func=lambda v, x, y: f"https://huggingface.github.io/autogptq-index/whl/{x}/auto-gptq",
pkg_file_func=pkg_file_func,
supported_cuda_versions=["11.8"],
)
if auto_gptq_url:
print(f"Install auto-gptq from {auto_gptq_url}")
return f"auto-gptq @ {auto_gptq_url}"
else:
"auto-gptq"
def quantization_requires():
pkgs = []
os_type, _ = get_cpu_avx_support()
if os_type != OSType.WINDOWS:
pkgs = ["bitsandbytes"]
else:
latest_version = get_latest_version(
"bitsandbytes",
"https://jllllll.github.io/bitsandbytes-windows-webui",
"0.41.1",
)
extra_index_url = f"https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-{latest_version}-py3-none-win_amd64.whl"
local_pkg = cache_package(
extra_index_url, "bitsandbytes", os_type == OSType.WINDOWS
)
pkgs = [f"bitsandbytes @ {local_pkg}"]
print(pkgs)
# For chatglm2-6b-int4
pkgs += ["cpm_kernels"]
if os_type != OSType.DARWIN:
# Since transformers 4.35.0, the GPT-Q/AWQ model can be loaded using AutoModelForCausalLM.
# autoawq requirements:
# 1. Compute Capability 7.5 (sm75). Turing and later architectures are supported.
# 2. CUDA Toolkit 11.8 and later.
autoawq_url = _build_wheels(
"autoawq",
"0.1.7",
base_url_func=lambda v, x, y: f"https://github.com/casper-hansen/AutoAWQ/releases/download/v{v}",
supported_cuda_versions=["11.8"],
)
if autoawq_url:
print(f"Install autoawq from {autoawq_url}")
pkgs.append(f"autoawq @ {autoawq_url}")
else:
pkgs.append("autoawq")
auto_gptq_pkg = _build_autoawq_requires()
if auto_gptq_pkg:
pkgs.append(auto_gptq_pkg)
pkgs.append("optimum")
setup_spec.extras["quantization"] = pkgs
def all_vector_store_requires():
"""
pip install "dbgpt[vstore]"
"""
setup_spec.extras["vstore"] = [
"pymilvus",
"weaviate-client",
]
def all_datasource_requires():
"""
pip install "dbgpt[datasource]"
"""
setup_spec.extras["datasource"] = [
# "sqlparse==0.4.4",
"pymssql",
"pymysql",
"pyspark",
"psycopg2",
# for doris
# mysqlclient 2.2.x have pkg-config issue on 3.10+
"mysqlclient==2.1.0",
"pydoris>=1.0.2,<2.0.0",
"clickhouse-connect",
"pyhive",
"thrift",
"thrift_sasl",
]
def openai_requires():
"""
pip install "dbgpt[openai]"
"""
setup_spec.extras["openai"] = ["tiktoken"]
if BUILD_VERSION_OPENAI:
# Read openai sdk version from env
setup_spec.extras["openai"].append(f"openai=={BUILD_VERSION_OPENAI}")
else:
setup_spec.extras["openai"].append("openai")
setup_spec.extras["openai"] += setup_spec.extras["framework"]
setup_spec.extras["openai"] += setup_spec.extras["rag"]
def gpt4all_requires():
"""
pip install "dbgpt[gpt4all]"
"""
setup_spec.extras["gpt4all"] = ["gpt4all"]
def vllm_requires():
"""
pip install "dbgpt[vllm]"
"""
setup_spec.extras["vllm"] = ["vllm"]
def cache_requires():
"""
pip install "dbgpt[cache]"
"""
setup_spec.extras["cache"] = ["rocksdict"]
def default_requires():
"""
pip install "dbgpt[default]"
"""
setup_spec.extras["default"] = [
# "tokenizers==0.13.3",
"tokenizers>=0.14",
"accelerate>=0.20.3",
"protobuf==3.20.3",
"zhipuai",
"dashscope",
"chardet",
]
setup_spec.extras["default"] += setup_spec.extras["framework"]
setup_spec.extras["default"] += setup_spec.extras["rag"]
setup_spec.extras["default"] += setup_spec.extras["datasource"]
setup_spec.extras["default"] += setup_spec.extras["torch"]
setup_spec.extras["default"] += setup_spec.extras["quantization"]
setup_spec.extras["default"] += setup_spec.extras["cache"]
def all_requires():
requires = set()
for _, pkgs in setup_spec.extras.items():
for pkg in pkgs:
requires.add(pkg)
setup_spec.extras["all"] = list(requires)
def init_install_requires():
setup_spec.install_requires += setup_spec.extras["core"]
print(f"Install requires: \n{','.join(setup_spec.install_requires)}")
core_requires()
torch_requires()
llama_cpp_requires()
quantization_requires()
all_vector_store_requires()
all_datasource_requires()
knowledge_requires()
openai_requires()
gpt4all_requires()
vllm_requires()
cache_requires()
# must be last
default_requires()
all_requires()
init_install_requires()
# Packages to exclude when IS_DEV_MODE is False
excluded_packages = ["tests", "*.tests", "*.tests.*", "examples"]
if IS_DEV_MODE:
packages = find_packages(exclude=excluded_packages)
else:
packages = find_packages(
exclude=excluded_packages,
include=[
"dbgpt",
"dbgpt._private",
"dbgpt._private.*",
"dbgpt.cli",
"dbgpt.cli.*",
"dbgpt.client",
"dbgpt.client.*",
"dbgpt.configs",
"dbgpt.configs.*",
"dbgpt.core",
"dbgpt.core.*",
"dbgpt.datasource",
"dbgpt.datasource.*",
"dbgpt.model",
"dbgpt.model.proxy",
"dbgpt.model.proxy.*",
"dbgpt.model.operators",
"dbgpt.model.operators.*",
"dbgpt.model.utils",
"dbgpt.model.utils.*",
"dbgpt.model.adapter",
"dbgpt.rag",
"dbgpt.rag.*",
"dbgpt.storage",
"dbgpt.storage.*",
"dbgpt.util",
"dbgpt.util.*",
],
)
setuptools.setup(
name="dbgpt",
packages=packages,
version=DB_GPT_VERSION,
author="csunny",
author_email="[email protected]",
description="DB-GPT is an experimental open-source project that uses localized GPT "
"large models to interact with your data and environment."
" With this solution, you can be assured that there is no risk of data leakage, "
"and your data is 100% private and secure.",
long_description=long_description,
long_description_content_type="text/markdown",
install_requires=setup_spec.install_requires,
url="https://github.com/eosphoros-ai/DB-GPT",
license="https://opensource.org/license/mit/",
python_requires=">=3.10",
extras_require=setup_spec.extras,
entry_points={
"console_scripts": [
"dbgpt=dbgpt.cli.cli_scripts:main",
],
},
)