-
Notifications
You must be signed in to change notification settings - Fork 0
/
base.ts
869 lines (780 loc) · 30.3 KB
/
base.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
/**
* @license
* Copyright 2016 Google Inc.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import {DisplayDimensionRenderInfo} from 'neuroglancer/navigation_state';
import {ProjectionParameters} from 'neuroglancer/projection_parameters';
import {getChunkPositionFromCombinedGlobalLocalPositions} from 'neuroglancer/render_coordinate_transform';
import {ChunkLayout} from 'neuroglancer/sliceview/chunk_layout';
import {WatchableValueChangeInterface, WatchableValueInterface} from 'neuroglancer/trackable_value';
import {DATA_TYPE_BYTES, DataType} from 'neuroglancer/util/data_type';
import {Disposable} from 'neuroglancer/util/disposable';
import {getFrustrumPlanes, getViewFrustrumDepthRange, isAABBIntersectingPlane, isAABBVisible, mat4, vec3} from 'neuroglancer/util/geom';
import * as matrix from 'neuroglancer/util/matrix';
import * as vector from 'neuroglancer/util/vector';
import {SharedObject} from 'neuroglancer/worker_rpc';
export {DATA_TYPE_BYTES, DataType};
const DEBUG_VISIBLE_SOURCES = false;
const DEBUG_CHUNK_VISIBILITY = false;
const tempMat4 = mat4.create();
/**
* Average cross-sectional area contained within a chunk of the specified size and rotation.
*
* This is estimated by taking the total volume of the chunk and dividing it by the total length of
* the chunk along the z axis.
*/
export function estimateSliceAreaPerChunk(chunkLayout: ChunkLayout, viewMatrix: mat4) {
// Compute the length of the projection of the chunk along the z axis in view space.
//
// Each chunk dimension `i` can independently affect the z projection by the dot product of column
// `i` of `chunkLayout.transform` and row 2 of `viewMatrix`.
let viewZProjection = 0;
let chunkVolume = Math.abs(chunkLayout.detTransform);
const {transform, size} = chunkLayout;
for (let i = 0; i < 3; ++i) {
let sum = 0;
for (let j = 0; j < 3; ++j) {
sum += viewMatrix[j * 4 + 2] * transform[4 * i + j];
}
const s = size[i];
viewZProjection += Math.abs(sum) * s;
chunkVolume *= s;
}
return chunkVolume / viewZProjection;
}
export interface MultiscaleVolumetricDataRenderLayer {
localPosition: WatchableValueInterface<Float32Array>;
renderScaleTarget: WatchableValueInterface<number>;
}
export interface TransformedSource<
RLayer extends MultiscaleVolumetricDataRenderLayer = SliceViewRenderLayer,
Source extends SliceViewChunkSource = SliceViewChunkSource> {
renderLayer: RLayer;
source: Source;
/**
* Approximate voxel size in each of the display dimensions.
*/
effectiveVoxelSize: vec3;
chunkLayout: ChunkLayout;
/**
* Arrays of length `rank` specifying the clip bounds (in voxels) for dimensions not in
* `chunkDisplayDimensionIndices` and not channel dimensions. The values for display/channel
* dimensions are set to -/+infinity.
*/
nonDisplayLowerClipBound: Float32Array;
nonDisplayUpperClipBound: Float32Array;
/**
* Arrays of length `rank` specifying the clip bounds (in voxels) for all dimensions.
*/
lowerClipBound: Float32Array;
upperClipBound: Float32Array;
// Lower clip bound (in voxels) in the "display" subspace of the chunk coordinate space.
lowerClipDisplayBound: vec3;
// Upper clip bound (in voxels) in the "display" subspace of the chunk coordinate space.
upperClipDisplayBound: vec3;
// Lower bound (in chunks) within the "display" subspace of the chunk coordinate space.
lowerChunkDisplayBound: vec3;
// Upper bound (in chunks) within the "display" subspace of the chunk coordinate space.
upperChunkDisplayBound: vec3;
/**
* Dimensions of the chunk corresponding to the 3 display dimensions of the slice view.
*/
chunkDisplayDimensionIndices: number[];
/**
* Rank of "layer" space and the "chunk clip" space, which is >= rank of chunk space.
*/
layerRank: number;
/**
* Transform from dimensions of layer space to dimensions of chunk space.
*
* Matrix has dimensions `(globalRank + localRank + 1) * layerRank`.
*
* Input space is `[global dimensions, local dimensions]`. Output space is the "chunk clip"
* coordinate space, in units of voxels.
*
*/
combinedGlobalLocalToChunkTransform: Float32Array;
/**
* Transform from non-display dimensions of layer space to non-display dimensions of chunk space.
*
* Same as `combinedGlobalLocalToChunkTransform`, except that rows corresponding to "display"
* chunk dimensions are all 0.
*
* Matrix has dimensions `(globalRank + localRank + 1) * layerRank`.
*
* Input space is `[global dimensions, local dimensions]`. Output space is the "chunk clip"
* coordinate space, in units of voxels.
*/
fixedLayerToChunkTransform: Float32Array;
/**
* When `computeVisibleChunks` invokes the `addChunk` callback, this is set to the position of the
* chunk.
*/
curPositionInChunks: Float32Array;
fixedPositionWithinChunk: Uint32Array;
}
export interface SliceViewRenderLayer {
/**
* Current position of non-global layer dimensions.
*/
localPosition: WatchableValueInterface<Float32Array>;
renderScaleTarget: WatchableValueInterface<number>;
filterVisibleSources(
sliceView: SliceViewBase<SliceViewChunkSource, SliceViewRenderLayer>,
sources: readonly TransformedSource[]): Iterable<TransformedSource>;
}
function updateFixedCurPositionInChunks<RLayer extends MultiscaleVolumetricDataRenderLayer>(
tsource: TransformedSource<RLayer, SliceViewChunkSource>, globalPosition: Float32Array,
localPosition: Float32Array): boolean {
const {curPositionInChunks, fixedPositionWithinChunk} = tsource;
const {nonDisplayLowerClipBound, nonDisplayUpperClipBound} = tsource;
const {rank, chunkDataSize} = tsource.source.spec;
if (!getChunkPositionFromCombinedGlobalLocalPositions(
curPositionInChunks, globalPosition, localPosition, tsource.layerRank,
tsource.fixedLayerToChunkTransform)) {
return false;
}
for (let chunkDim = 0; chunkDim < rank; ++chunkDim) {
const x = curPositionInChunks[chunkDim];
if (x < nonDisplayLowerClipBound[chunkDim] || x >= nonDisplayUpperClipBound[chunkDim]) {
if (DEBUG_VISIBLE_SOURCES) {
console.log(
'excluding source', tsource, `because of chunkDim=${chunkDim}, sum=${x}`,
nonDisplayLowerClipBound, nonDisplayUpperClipBound, tsource.fixedLayerToChunkTransform);
}
return false;
}
const chunkSize = chunkDataSize[chunkDim];
const chunk = curPositionInChunks[chunkDim] = Math.floor(x / chunkSize);
fixedPositionWithinChunk[chunkDim] = x - chunk * chunkSize;
}
return true;
}
function pickBestAlternativeSource<
RLayer extends MultiscaleVolumetricDataRenderLayer, Source extends
SliceViewChunkSource, Transformed extends TransformedSource<RLayer, Source>>(
viewMatrix: mat4, alternatives: Transformed[]) {
let numAlternatives = alternatives.length;
let bestAlternativeIndex = 0;
if (DEBUG_VISIBLE_SOURCES) {
console.log(alternatives);
}
if (numAlternatives > 1) {
let bestSliceArea = 0;
for (let alternativeIndex = 0; alternativeIndex < numAlternatives; ++alternativeIndex) {
let alternative = alternatives[alternativeIndex];
const {chunkLayout} = alternative;
let sliceArea = estimateSliceAreaPerChunk(chunkLayout, viewMatrix);
if (DEBUG_VISIBLE_SOURCES) {
console.log(`chunksize = ${chunkLayout.size}, sliceArea = ${sliceArea}`);
}
if (sliceArea > bestSliceArea) {
bestSliceArea = sliceArea;
bestAlternativeIndex = alternativeIndex;
}
}
}
return bestAlternativeIndex;
}
export interface VisibleLayerSources<
RLayer extends MultiscaleVolumetricDataRenderLayer, Source extends
SliceViewChunkSource, Transformed extends TransformedSource<RLayer, Source>> {
allSources: Transformed[][];
visibleSources: Transformed[];
displayDimensionRenderInfo: DisplayDimensionRenderInfo;
}
const tempChunkLayout = new ChunkLayout(vec3.create(), mat4.create(), 0);
export class SliceViewProjectionParameters extends ProjectionParameters {
/**
* Normal vector of cross section in (non-isotropic) global voxel coordinates.
*/
viewportNormalInGlobalCoordinates = vec3.create();
/**
* Normal vector of cross section in isotropic global canonical voxel coordinates.
*/
viewportNormalInCanonicalCoordinates = vec3.create();
centerDataPosition = vec3.create();
/**
* Size in physical units of a single pixel.
*/
pixelSize: number = 0;
}
function visibleSourcesInvalidated(
oldValue: SliceViewProjectionParameters, newValue: SliceViewProjectionParameters) {
if (oldValue.displayDimensionRenderInfo !== newValue.displayDimensionRenderInfo) return true;
if (oldValue.pixelSize !== newValue.pixelSize) return true;
const {viewMatrix: oldViewMatrix} = oldValue;
const {viewMatrix: newViewMatrix} = newValue;
for (let i = 0; i < 12; ++i) {
if (oldViewMatrix[i] !== newViewMatrix[i]) return true;
}
return false;
}
export class SliceViewBase<
Source extends SliceViewChunkSource = SliceViewChunkSource,
RLayer extends SliceViewRenderLayer = SliceViewRenderLayer, Transformed extends
TransformedSource<RLayer, Source> = TransformedSource<RLayer, Source>> extends
SharedObject {
visibleLayers = new Map<RLayer, VisibleLayerSources<RLayer, Source, Transformed>>();
visibleSourcesStale = true;
constructor(public projectionParameters:
WatchableValueChangeInterface<SliceViewProjectionParameters>) {
super();
this.registerDisposer(projectionParameters.changed.add((oldValue, newValue) => {
if (visibleSourcesInvalidated(oldValue, newValue)) {
this.invalidateVisibleSources();
}
this.invalidateVisibleChunks();
}));
}
invalidateVisibleSources() {
this.visibleSourcesStale = true;
}
invalidateVisibleChunks() {}
/**
* Computes the list of sources to use for each visible layer, based on the
* current pixelSize.
*/
updateVisibleSources() {
if (!this.visibleSourcesStale) {
return;
}
this.visibleSourcesStale = false;
const curDisplayDimensionRenderInfo =
this.projectionParameters.value.displayDimensionRenderInfo;
const {visibleLayers} = this;
for (const [renderLayer, {allSources, visibleSources, displayDimensionRenderInfo}] of
visibleLayers) {
visibleSources.length = 0;
if (displayDimensionRenderInfo !== curDisplayDimensionRenderInfo || allSources.length === 0) {
continue;
}
const preferredOrientationIndex = pickBestAlternativeSource(
this.projectionParameters.value.viewMatrix, allSources.map(x => x[0]));
const sources = allSources[preferredOrientationIndex];
for (const source of renderLayer.filterVisibleSources(this, sources)) {
visibleSources.push(source as Transformed);
}
// Reverse visibleSources list since we added sources from coarsest to finest resolution, but
// we want them ordered from finest to coarsest.
visibleSources.reverse();
if (DEBUG_VISIBLE_SOURCES) {
console.log('visible sources chosen', visibleSources);
}
}
}
}
/**
* By default, choose a chunk size with at most 2^18 = 262144 voxels.
*/
export const DEFAULT_MAX_VOXELS_PER_CHUNK_LOG2 = 18;
/**
* Specifies common options for getNearIsotropicBlockSize and getTwoDimensionalBlockSize.
*/
export interface BaseChunkLayoutOptions {
/**
* Number of chunk dimensions.
*/
rank: number;
/**
* This, together with upperVoxelBound, specifies the total volume dimensions, which serves as a
* bound on the maximum chunk size. If not specified, defaults to a zero vector.
*/
lowerVoxelBound?: Float32Array;
/**
* Upper voxel bound. If not specified, the total volume dimensions are not used to bound the
* chunk size.
*/
upperVoxelBound?: Float32Array;
/**
* Base 2 logarithm of the maximum number of voxels per chunk. Defaults to
* DEFAULT_MAX_VOXELS_PER_CHUNK_LOG2.
*/
maxVoxelsPerChunkLog2?: number;
/**
* Linear (not affine) transformation matrix with `rank` columns and `displayRank` rows in
* column-major order. Specifies the transformation from chunk space to an isotropic "camera view
* space". Note that only relative scales of input dimensions are relevant, any rotations applied
* are irrelevant.
*/
chunkToViewTransform: Float32Array;
displayRank: number;
minBlockSize?: Uint32Array;
maxBlockSize?: Uint32Array;
}
export interface GetNearIsotropicBlockSizeOptions extends BaseChunkLayoutOptions {}
/**
* Determines a near-isotropic (in camera view space) block size. All dimensions will be
* powers of 2, and will not exceed upperVoxelBound - lowerVoxelBound. The total number of voxels
* will not exceed maxVoxelsPerChunkLog2.
*/
export function getNearIsotropicBlockSize(options: GetNearIsotropicBlockSizeOptions): Uint32Array {
let {
rank,
upperVoxelBound,
maxVoxelsPerChunkLog2 = DEFAULT_MAX_VOXELS_PER_CHUNK_LOG2,
chunkToViewTransform,
displayRank,
minBlockSize,
maxBlockSize,
} = options;
const {lowerVoxelBound = new Uint32Array(rank)} = options;
// Adjust voxelSize by effective scaling factor.
const effectiveVoxelSize = new Float32Array(rank);
for (let chunkDim = 0; chunkDim < rank; ++chunkDim) {
let factor = 0;
for (let displayDim = 0; displayDim < displayRank; ++displayDim) {
const c = chunkToViewTransform[chunkDim * displayRank + displayDim];
factor += c * c;
}
effectiveVoxelSize[chunkDim] = Math.sqrt(factor);
}
const chunkDataSize = new Uint32Array(rank);
if (minBlockSize !== undefined) {
chunkDataSize.set(minBlockSize);
} else {
chunkDataSize.fill(1);
}
const chunkDataSizeUpperBound = new Array<number>(rank);
for (let chunkDim = 0; chunkDim < rank; ++chunkDim) {
let bound = Number.POSITIVE_INFINITY;
if (effectiveVoxelSize[chunkDim] === 0) {
bound = chunkDataSize[chunkDim];
} else {
if (upperVoxelBound !== undefined) {
bound = Math.pow(
2, Math.floor(Math.log2(upperVoxelBound[chunkDim] - lowerVoxelBound[chunkDim])));
}
if (maxBlockSize !== undefined) {
bound = Math.min(bound, maxBlockSize[chunkDim]);
}
}
chunkDataSizeUpperBound[chunkDim] = bound;
}
// Determine the dimension in which chunkDataSize should be increased. This is the smallest
// dimension (in nanometers) that is < maxChunkDataSize (in voxels).
//
// Returns -1 if there is no such dimension.
function findNextDimension() {
let minSize = Infinity;
let minDimension = -1;
for (let chunkDim = 0; chunkDim < rank; ++chunkDim) {
if (chunkDataSize[chunkDim] >= chunkDataSizeUpperBound[chunkDim]) {
continue;
}
let size = chunkDataSize[chunkDim] * effectiveVoxelSize[chunkDim];
if (size < minSize) {
minSize = size;
minDimension = chunkDim;
}
}
return minDimension;
}
maxVoxelsPerChunkLog2 -= Math.log2(vector.prod(chunkDataSize));
for (let i = 0; i < maxVoxelsPerChunkLog2; ++i) {
let nextDim = findNextDimension();
if (nextDim === -1) {
break;
}
chunkDataSize[nextDim] *= 2;
}
return chunkDataSize;
}
/**
* Returns an array of [xy, yz, xz] 2-dimensional block sizes, where [x, y, z] refer to the view
* dimensions.
*/
export function getTwoDimensionalBlockSizes(options: BaseChunkLayoutOptions) {
const chunkDataSizes: Uint32Array[] = [];
const {displayRank, chunkToViewTransform, rank} = options;
if (displayRank > 3) {
throw new Error('Unsupported view transform');
}
if (displayRank < 3) {
return [getNearIsotropicBlockSize(options)];
}
for (let i = 0; i < 3; ++i) {
const excludedDim = (i + 2) % 3;
const restrictedTransform = new Float32Array(chunkToViewTransform);
for (let j = 0; j < rank; ++j) {
restrictedTransform[j * displayRank + excludedDim] = 0;
}
chunkDataSizes[i] =
getNearIsotropicBlockSize({...options, chunkToViewTransform: restrictedTransform});
}
return chunkDataSizes;
}
export enum ChunkLayoutPreference {
/**
* Indicates that isotropic chunks are desired.
*/
ISOTROPIC = 0,
/**
* Indicates that 2-D chunks are desired.
*/
FLAT = 1,
}
export interface SliceViewSourceOptions {
/**
* Transform from the multiscale source coordinate space to a "view" coordinate space that
* reflects the relative scales. This is a *linear* (not affine) transformation matrix with
* `rank` columns and `displayRank` rows in column-major order, where `rank` is the rank of the
* multiscale source.
*/
multiscaleToViewTransform: Float32Array;
displayRank: number;
modelChannelDimensionIndices: readonly number[];
}
export function getCombinedTransform(
rank: number, bToC: Float32Array, aToB: Float32Array|undefined) {
if (aToB === undefined) {
return bToC;
} else {
return matrix.multiply(
new Float32Array((rank + 1) * (rank + 1)), rank + 1, bToC, rank + 1, aToB, rank + 1,
rank + 1, rank + 1, rank + 1);
}
}
/**
* Specifies parameters for getChunkDataSizes.
*/
export interface ChunkLayoutOptions {
/**
* Chunk sizes in voxels.
*/
chunkDataSizes?: Uint32Array[];
/**
* Preferred chunk layout, which determines chunk sizes to use if chunkDataSizes is not
* specified.
*/
chunkLayoutPreference?: ChunkLayoutPreference;
}
export function getChunkDataSizes(options: ChunkLayoutOptions&BaseChunkLayoutOptions) {
if (options.chunkDataSizes !== undefined) {
return options.chunkDataSizes;
}
const {chunkLayoutPreference = ChunkLayoutPreference.ISOTROPIC} = options;
switch (chunkLayoutPreference) {
case ChunkLayoutPreference.ISOTROPIC:
return [getNearIsotropicBlockSize(options)];
case ChunkLayoutPreference.FLAT:
return getTwoDimensionalBlockSizes(options);
}
}
/**
* Generic specification for SliceView chunks specifying a layout and voxel size.
*/
export interface SliceViewChunkSpecification<ChunkDataSize extends Uint32Array|Float32Array =
Uint32Array | Float32Array> {
rank: number;
/**
* Size of chunk in voxels.
*/
chunkDataSize: ChunkDataSize;
/**
* All valid chunks are in the range [lowerChunkBound, upperChunkBound).
*
* These are specified in units of chunks (not voxels).
*/
lowerChunkBound: Float32Array;
upperChunkBound: Float32Array;
lowerVoxelBound: Float32Array;
upperVoxelBound: Float32Array;
}
export function makeSliceViewChunkSpecification<ChunkDataSize extends Uint32Array|Float32Array>(
options: SliceViewChunkSpecificationOptions<ChunkDataSize>):
SliceViewChunkSpecification<ChunkDataSize> {
const {
rank,
chunkDataSize,
upperVoxelBound,
} = options;
const {
lowerVoxelBound = new Float32Array(rank),
} = options;
const lowerChunkBound = new Float32Array(rank);
const upperChunkBound = new Float32Array(rank);
for (let i = 0; i < rank; ++i) {
lowerChunkBound[i] = Math.floor(lowerVoxelBound[i] / chunkDataSize[i]);
upperChunkBound[i] = Math.floor((upperVoxelBound[i] - 1) / chunkDataSize[i] + 1);
}
return {
rank,
chunkDataSize,
lowerChunkBound,
upperChunkBound,
lowerVoxelBound,
upperVoxelBound,
};
}
export function*
filterVisibleSources(
sliceView: SliceViewBase, renderLayer: SliceViewRenderLayer,
sources: readonly TransformedSource[]): Iterable<TransformedSource> {
// Increase pixel size by a small margin.
const pixelSize = sliceView.projectionParameters.value.pixelSize * 1.1;
// At the smallest scale, all alternative sources must have the same voxel size, which is
// considered to be the base voxel size.
const smallestVoxelSize = sources[0].effectiveVoxelSize;
const renderScaleTarget = renderLayer.renderScaleTarget.value;
/**
* Determines whether we should continue to look for a finer-resolution source *after* one
* with the specified voxelSize.
*/
const canImproveOnVoxelSize = (voxelSize: vec3) => {
const targetSize = pixelSize * renderScaleTarget;
for (let i = 0; i < 3; ++i) {
const size = voxelSize[i];
// If size <= pixelSize, no need for improvement.
// If size === smallestVoxelSize, also no need for improvement.
if (size > targetSize && size > 1.01 * smallestVoxelSize[i]) {
return true;
}
}
return false;
};
const improvesOnPrevVoxelSize = (voxelSize: vec3, prevVoxelSize: vec3) => {
const targetSize = pixelSize * renderScaleTarget;
for (let i = 0; i < 3; ++i) {
const size = voxelSize[i];
const prevSize = prevVoxelSize[i];
if (Math.abs(targetSize - size) < Math.abs(targetSize - prevSize) && size < 1.01 * prevSize) {
return true;
}
}
return false;
};
let scaleIndex = sources.length - 1;
let prevVoxelSize: vec3|undefined;
while (true) {
const transformedSource = sources[scaleIndex];
if (prevVoxelSize !== undefined &&
!improvesOnPrevVoxelSize(transformedSource.effectiveVoxelSize, prevVoxelSize)) {
break;
}
yield transformedSource;
if (scaleIndex === 0 || !canImproveOnVoxelSize(transformedSource.effectiveVoxelSize)) {
break;
}
prevVoxelSize = transformedSource.effectiveVoxelSize;
--scaleIndex;
}
}
/**
* Common parameters for SliceView Chunks.
*/
export interface SliceViewChunkSpecificationBaseOptions {
rank: number;
/**
* If not specified, defaults to an all-zero vector. This determines lowerChunkBound. If this is
* not a multiple of chunkDataSize, then voxels at lower positions may still be requested.
*/
lowerVoxelBound?: Float32Array;
/**
* Exclusive upper bound in "chunk" coordinate space, in voxels. This determines upperChunkBound.
*/
upperVoxelBound: Float32Array;
}
export interface SliceViewChunkSpecificationOptions<
ChunkDataSize extends Uint32Array|Float32Array = Uint32Array | Float32Array> extends
SliceViewChunkSpecificationBaseOptions {
chunkDataSize: ChunkDataSize;
}
export interface SliceViewChunkSource<
Spec extends SliceViewChunkSpecification = SliceViewChunkSpecification> extends Disposable {
spec: Spec;
}
export const SLICEVIEW_RPC_ID = 'SliceView';
export const SLICEVIEW_RENDERLAYER_RPC_ID = 'sliceview/RenderLayer';
export const SLICEVIEW_ADD_VISIBLE_LAYER_RPC_ID = 'SliceView.addVisibleLayer';
export const SLICEVIEW_REMOVE_VISIBLE_LAYER_RPC_ID = 'SliceView.removeVisibleLayer';
const tempVisibleVolumetricChunkLower = new Float32Array(3);
const tempVisibleVolumetricChunkUpper = new Float32Array(3);
const tempVisibleVolumetricModelViewProjection = mat4.create();
const tempVisibleVolumetricClippingPlanes = new Float32Array(24);
function forEachVolumetricChunkWithinFrustrum<RLayer extends MultiscaleVolumetricDataRenderLayer>(
clippingPlanes: Float32Array, transformedSource: TransformedSource<RLayer>,
callback: (positionInChunks: vec3, clippingPlanes: Float32Array) => void,
predicate: (
xLower: number, yLower: number, zLower: number, xUpper: number, yUpper: number,
zUpper: number, clippingPlanes: Float32Array) => boolean) {
const lower = tempVisibleVolumetricChunkLower;
const upper = tempVisibleVolumetricChunkUpper;
const {lowerChunkDisplayBound, upperChunkDisplayBound} = transformedSource;
for (let i = 0; i < 3; ++i) {
lower[i] = Math.max(lower[i], lowerChunkDisplayBound[i]);
upper[i] = Math.min(upper[i], upperChunkDisplayBound[i]);
}
const {curPositionInChunks, chunkDisplayDimensionIndices} = transformedSource;
function recurse() {
if (!predicate(lower[0], lower[1], lower[2], upper[0], upper[1], upper[2], clippingPlanes)) {
return;
}
let splitDim = 0;
let splitSize = Math.max(0, upper[0] - lower[0]);
let volume = splitSize;
for (let i = 1; i < 3; ++i) {
const size = Math.max(0, upper[i] - lower[i]);
volume *= size;
if (size > splitSize) {
splitSize = size;
splitDim = i;
}
}
if (volume === 0) return;
if (volume === 1) {
curPositionInChunks[chunkDisplayDimensionIndices[0]] = lower[0];
curPositionInChunks[chunkDisplayDimensionIndices[1]] = lower[1];
curPositionInChunks[chunkDisplayDimensionIndices[2]] = lower[2];
callback(lower as vec3, clippingPlanes);
return;
}
const prevLower = lower[splitDim];
const prevUpper = upper[splitDim];
const splitPoint = Math.floor(0.5 * (prevLower + prevUpper));
upper[splitDim] = splitPoint;
recurse();
upper[splitDim] = prevUpper;
lower[splitDim] = splitPoint;
recurse();
lower[splitDim] = prevLower;
}
recurse();
}
export function forEachVisibleVolumetricChunk<RLayer extends MultiscaleVolumetricDataRenderLayer>(
projectionParameters: ProjectionParameters, localPosition: Float32Array,
transformedSource: TransformedSource<RLayer>,
callback: (positionInChunks: vec3, clippingPlanes: Float32Array) => void) {
if (!updateFixedCurPositionInChunks(
transformedSource, projectionParameters.globalPosition, localPosition)) {
return;
}
const {size: chunkSize} = transformedSource.chunkLayout;
const modelViewProjection = mat4.multiply(
tempVisibleVolumetricModelViewProjection, projectionParameters.viewProjectionMat,
transformedSource.chunkLayout.transform);
for (let i = 0; i < 3; ++i) {
const s = chunkSize[i];
for (let j = 0; j < 4; ++j) {
modelViewProjection[4 * i + j] *= s;
}
}
const clippingPlanes = tempVisibleVolumetricClippingPlanes;
getFrustrumPlanes(clippingPlanes, modelViewProjection);
const lower = tempVisibleVolumetricChunkLower;
const upper = tempVisibleVolumetricChunkUpper;
lower.fill(Number.NEGATIVE_INFINITY);
upper.fill(Number.POSITIVE_INFINITY);
forEachVolumetricChunkWithinFrustrum(clippingPlanes, transformedSource, callback, isAABBVisible);
}
export function
forEachPlaneIntersectingVolumetricChunk<RLayer extends MultiscaleVolumetricDataRenderLayer>(
projectionParameters: ProjectionParameters, localPosition: Float32Array,
transformedSource: TransformedSource<RLayer>, chunkLayout: ChunkLayout,
callback: (positionInChunks: vec3) => void) {
if (!updateFixedCurPositionInChunks(
transformedSource, projectionParameters.globalPosition, localPosition)) {
return;
}
const {size: chunkSize} = chunkLayout;
const modelViewProjection = mat4.multiply(
tempVisibleVolumetricModelViewProjection, projectionParameters.viewProjectionMat,
chunkLayout.transform);
for (let i = 0; i < 3; ++i) {
const s = chunkSize[i];
for (let j = 0; j < 4; ++j) {
modelViewProjection[4 * i + j] *= s;
}
}
const invModelViewProjection = tempMat4;
mat4.invert(invModelViewProjection, modelViewProjection);
const lower = tempVisibleVolumetricChunkLower;
const upper = tempVisibleVolumetricChunkUpper;
const epsilon = 1e-3;
for (let i = 0; i < 3; ++i) {
// Add small offset of `epsilon` voxels to bias towards the higher coordinate if very close to a
// voxel boundary.
const c = invModelViewProjection[12 + i] + epsilon / chunkSize[i];
const xCoeff = Math.abs(invModelViewProjection[i]);
const yCoeff = Math.abs(invModelViewProjection[4 + i]);
lower[i] = Math.floor(c - xCoeff - yCoeff);
upper[i] = Math.floor(c + xCoeff + yCoeff + 1);
}
const clippingPlanes = tempVisibleVolumetricClippingPlanes;
for (let i = 0; i < 3; ++i) {
const xCoeff = modelViewProjection[4 * i];
const yCoeff = modelViewProjection[4 * i + 1];
const zCoeff = modelViewProjection[4 * i + 2];
clippingPlanes[i] = xCoeff;
clippingPlanes[4 + i] = -xCoeff;
clippingPlanes[8 + i] = +yCoeff;
clippingPlanes[12 + i] = -yCoeff;
clippingPlanes[16 + i] = +zCoeff;
clippingPlanes[20 + i] = -zCoeff;
}
{
const i = 3;
const xCoeff = modelViewProjection[4 * i];
const yCoeff = modelViewProjection[4 * i + 1];
const zCoeff = modelViewProjection[4 * i + 2];
clippingPlanes[i] = 1 + xCoeff;
clippingPlanes[4 + i] = 1 - xCoeff;
clippingPlanes[8 + i] = 1 + yCoeff;
clippingPlanes[12 + i] = 1 - yCoeff;
clippingPlanes[16 + i] = zCoeff;
clippingPlanes[20 + i] = -zCoeff;
}
if (DEBUG_CHUNK_VISIBILITY) {
console.log('clippingPlanes', clippingPlanes);
console.log('modelViewProjection', modelViewProjection.join(','));
console.log(`lower=${lower.join(',')}, upper=${upper.join(',')}`);
}
forEachVolumetricChunkWithinFrustrum(
clippingPlanes, transformedSource, callback, isAABBIntersectingPlane);
}
/**
* For chunk layouts with finiteRank < 3, returns an adjusted chunk layout where chunk 0 in each
* non-finite dimension is guaranteed to cover the viewport.
*/
export function getNormalizedChunkLayout(
projectionParameters: ProjectionParameters, chunkLayout: ChunkLayout): ChunkLayout {
const {finiteRank} = chunkLayout;
if (finiteRank === 3) return chunkLayout;
tempChunkLayout.finiteRank = finiteRank;
vec3.copy(tempChunkLayout.size, chunkLayout.size);
const transform = mat4.copy(tempChunkLayout.transform, chunkLayout.transform);
const invTransform = mat4.copy(tempChunkLayout.invTransform, chunkLayout.invTransform);
tempChunkLayout.detTransform = chunkLayout.detTransform;
const {invViewMatrix, width, height} = projectionParameters;
const depth = getViewFrustrumDepthRange(projectionParameters.projectionMat);
for (let chunkRenderDim = finiteRank; chunkRenderDim < 3; ++chunkRenderDim) {
// we want to ensure chunk [0] fully covers the viewport
const offset = invViewMatrix[12 + chunkRenderDim];
let lower = offset, upper = offset;
const xc = Math.abs(invViewMatrix[chunkRenderDim] * width);
lower -= xc;
upper += xc;
const yc = Math.abs(invViewMatrix[chunkRenderDim + 4] * height);
lower -= yc;
upper += yc;
const zc = Math.abs(invViewMatrix[chunkRenderDim + 8] * depth);
lower -= zc;
upper += zc;
const scaleFactor = Math.max(1, upper - lower);
transform[12 + chunkRenderDim] = lower;
transform[5 * chunkRenderDim] = scaleFactor;
}
mat4.invert(invTransform, transform);
return tempChunkLayout;
}