-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_results_decompostion.py
179 lines (146 loc) · 8.09 KB
/
plot_results_decompostion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import random
import numpy as np
import time
import pickle
import matplotlib.pyplot as plt
import scipy.stats
def mean_confidence_interval_bootstrap(data, confidence=0.95, nb_iterations=1000):
"""
Compute the mean and confidence interval of the the input data array-like using the bootstraping method
:param data: (array-like)
:param confidence: probability of the mean to lie in the interval
:return: (tuple) mean, interval upper-endpoint, interval lower-endpoint
"""
data = 1.0 * np.array(data)
size = len(data)
mean = np.mean(data)
mean_list =[]
for i in range(nb_iterations):
sample = np.random.choice(data, size=size, replace=True)
mean_list.append(np.mean(sample))
mean_list.sort()
upper_confidence_interval_bound = mean_list[int(nb_iterations * confidence + 0.5)]
lower_confidence_interval_bound = mean_list[int(nb_iterations * (1 - confidence) + 0.5)]
return mean, lower_confidence_interval_bound, upper_confidence_interval_bound
def ressample_curve(xy_list, new_abscisse_list):
# a curve is given in xy_list with its abscisse and ordinate
# return the same curve but define with different points, the new abscisse to use is given in new_abscisse_list
new_y_value_list = []
index_sup = None
for abscisse in new_abscisse_list:
for index, xy in enumerate(xy_list):
x, y = xy
if x >= abscisse:
index_sup = index
break
if index == 0:
x1, y1 = xy_list[0]
x2, y2 = xy_list[1]
elif index is None:
x1, y1 = xy_list[-2]
x2, y2 = xy_list[-1]
else:
x1, y1 = xy_list[index - 1]
x2, y2 = xy_list[index]
new_y_value = y1 + (abscisse - x1)/(x2 - x1) * (y2 - y1)
new_y_value_list.append(new_y_value)
return new_y_value_list
def plot_dataset_time_bounds(global_path, dataset_name, size_to_consider, abscisse, algorithm_list=None, x_label="Temps de calcul", y_label="Valeur décalée des bornes", legend_position="upper left"):
# This function reads the results of a dataset, aggregates the results of instances with the same parameters and plots the curves
result_file = open(global_path + "/MCNF_solver/instance_files_decomposition/" + dataset_name + "/result_file.p", "rb" )
result_dict = pickle.load(result_file)
result_file.close()
if algorithm_list is None:
algorithm_list = list(result_dict.keys())
# Color for each algorithm
colors = {"Fenchel" : '#1f77b4', "Fenchel no preprocessing" : '#1f77b4', "DW-Fenchel" : '#ffbf0e',
"DW-Fenchel iterative" : '#d62728', 'DW-Fenchel no preprocessing' : '#d62728', "DW" : '#9467bd',
"DW momentum" : '#2ca02c', "DW interior" : "#000000", "RR sorted" : "#eeee00",
'SA 2' : '#2ca02c', 'VNS' : '#d62728', 'VNS 2' : '#d62728', 'Ant colony' : '#d62728'}
# Line style for each algorithm
formating = {"Fenchel" : '', "Fenchel no preprocessing" : '-o', "DW-Fenchel" : '',
"DW-Fenchel iterative" : '', 'DW-Fenchel no preprocessing' : '-o', "DW" : '',
"DW momentum" : '', "DW interior" : "", "RR sorted" : "-d",
'SA 2' : '--', 'VNS' : '-o', 'VNS 2' : '--', 'Ant colony' : '-o'}
# Name in legend for each algorithm
label = {"Fenchel" : 'Fenchel', "Fenchel no preprocessing" : 'Fenchel sans pré-traitement', "DW-Fenchel" : 'DW-Fenchel',
"DW-Fenchel iterative" : 'DW-Fenchel itératif', 'DW-Fenchel no preprocessing' : 'DW-Fenchel sans pré-traitement', "DW" : 'DW',
"DW momentum" : 'DW momentum', "DW interior" : "DW point intérieur", "RR sorted" : "-d",
'SA 2' : '--', 'VNS' : '-o', 'VNS 2' : '--', 'Ant colony' : '-o'}
figure = plt.figure()
plt.rcParams.update({'font.size': 13})
ax = figure.gca()
# plt.xscale("log")
plt.yscale("symlog", linthresh=10**-0)
# plt.xscale("symlog", linthresh=10**-0)
# ax.set_xlabel(x_labeyl)
# computing the probable true value of the Dantzig-Wolfe linear relaxation
DW_bounds = {}
for algorithm_name in algorithm_list:
for instance_name in result_dict[algorithm_name]:
size = int(instance_name.split('_')[2]) # use for the other datasets
# size = int(instance_name.split('_')[3]) # use for capacity_scaling_dataset
if size == size_to_consider:
results_list = result_dict[algorithm_name][instance_name][0][0]
last_ub, last_lb, finish_time = results_list[-1]
if instance_name not in DW_bounds or DW_bounds[instance_name][0] > abs(last_ub - last_lb):
DW_bounds[instance_name] = (abs(last_ub - last_lb), (last_ub + last_lb)/2)
# aggregating the results and ploting the curves
for algorithm_name in algorithm_list:
results_temp = {}
for instance_name in result_dict[algorithm_name]:
size = int(instance_name.split('_')[2]) # use for the other datasets
# size = int(instance_name.split('_')[3]) # use for capacity_scaling_dataset
if size == size_to_consider:
results_temp[instance_name] = result_dict[algorithm_name][instance_name][0][0]
# break
# results aggregation
ub_list_list = []
lb_list_list = []
for instance_name in results_temp:
results_list = results_temp[instance_name]
ub_time_list = [(time, ub - DW_bounds[instance_name][1]) for ub, lb, time in results_list]
ub_time_list.append((10**5, ub_time_list[-1][1]))
lb_time_list = [(time, lb - DW_bounds[instance_name][1]) for ub, lb, time in results_list]
lb_time_list.append((10**5, lb_time_list[-1][1]))
ub_list_list.append(ressample_curve(ub_time_list, abscisse))
lb_list_list.append(ressample_curve(lb_time_list, abscisse))
for i, lb_list in enumerate(lb_list_list):
new_lb_list = []
best_lb = None
for lb in lb_list:
if best_lb is None or lb > best_lb:
best_lb = lb
new_lb_list.append(best_lb)
lb_list_list[i] = new_lb_list
# plotting the curves
ub_list = [mean_confidence_interval_bootstrap(x, confidence=0.95, nb_iterations=100) for x in zip(*ub_list_list)]
lb_list = [mean_confidence_interval_bootstrap(x, confidence=0.95, nb_iterations=100) for x in zip(*lb_list_list)]
plt.plot(abscisse, [x[0] for x in ub_list], formating[algorithm_name], label=label[algorithm_name], color=colors[algorithm_name], markevery=20)
plt.fill_between(abscisse, [x[1] for x in ub_list], [x[2] for x in ub_list], alpha=0.25, facecolor=colors[algorithm_name], edgecolor=colors[algorithm_name])
plt.plot(abscisse, [x[0] for x in lb_list], formating[algorithm_name], color=colors[algorithm_name], markevery=20)
plt.fill_between(abscisse, [x[1] for x in lb_list], [x[2] for x in lb_list], alpha=0.25, facecolor=colors[algorithm_name], edgecolor=colors[algorithm_name])
if legend_position is not None:
ax.legend(loc=legend_position, framealpha=0.0)
plt.show()
if __name__ == "__main__":
global_path = "/home/francois/Desktop"
# choice of the dataset to plot
# dataset_name = "graph_scaling_dataset"
dataset_name = "small_dataset"
# dataset_name = "graph_scaling_dataset_lower_bound"
# dataset_name = "small_dataset_lower_bound"
# dataset_name = "capacity_scaling_dataset"
# abscisse used to resample the curves
abscisse = list(range(1, 60*60, 10))
# list of the algorithms to plot
algorithm_list = []
algorithm_list.append("Fenchel")
algorithm_list.append("Fenchel no preprocessing")
algorithm_list.append("DW-Fenchel")
algorithm_list.append("DW-Fenchel iterative")
algorithm_list.append("DW-Fenchel no preprocessing")
algorithm_list.append("DW")
algorithm_list.append("DW momentum")
algorithm_list.append("DW interior")
plot_dataset_time_bounds(global_path, dataset_name, 70, abscisse, algorithm_list=algorithm_list, legend_position='upper left')