forked from poojahira/image-captioning-bottom-up-top-down
-
Notifications
You must be signed in to change notification settings - Fork 0
/
datasets.py
executable file
·74 lines (57 loc) · 2.65 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
from torch.utils.data import Dataset
import h5py
import json
import os
class CaptionDataset(Dataset):
"""
A PyTorch Dataset class to be used in a PyTorch DataLoader to create batches.
"""
def __init__(self, data_folder, data_name, split, transform=None):
"""
:param data_folder: folder where data files are stored
:param data_name: base name of processed datasets
:param split: split, one of 'TRAIN', 'VAL', or 'TEST'
:param transform: image transform pipeline
"""
self.split = split
assert self.split in {'TRAIN', 'VAL','TEST'}
# Open hdf5 file where images are stored
self.train_hf = h5py.File(data_folder + '/train36.hdf5', 'r')
self.train_features = self.train_hf['image_features']
self.val_hf = h5py.File(data_folder + '/val36.hdf5', 'r')
self.val_features = self.val_hf['image_features']
# Captions per image
self.cpi = 5
# Load encoded captions
with open(os.path.join(data_folder, self.split + '_CAPTIONS_' + data_name + '.json'), 'r') as j:
self.captions = json.load(j)
# Load caption lengths
with open(os.path.join(data_folder, self.split + '_CAPLENS_' + data_name + '.json'), 'r') as j:
self.caplens = json.load(j)
# Load bottom up image features distribution
with open(os.path.join(data_folder, self.split + '_GENOME_DETS_' + data_name + '.json'), 'r') as j:
self.objdet = json.load(j)
# PyTorch transformation pipeline for the image (normalizing, etc.)
self.transform = transform
# Total number of datapoints
self.dataset_size = len(self.captions)
def __getitem__(self, i):
# The Nth caption corresponds to the (N // captions_per_image)th image
objdet = self.objdet[i // self.cpi]
# Load bottom up image features
if objdet[0] == "v":
img = torch.FloatTensor(self.val_features[objdet[1]])
else:
img = torch.FloatTensor(self.train_features[objdet[1]])
caption = torch.LongTensor(self.captions[i])
caplen = torch.LongTensor([self.caplens[i]])
if self.split is 'TRAIN':
return img, caption, caplen
else:
# For validation of testing, also return all 'captions_per_image' captions to find BLEU-4 score
all_captions = torch.LongTensor(
self.captions[((i // self.cpi) * self.cpi):(((i // self.cpi) * self.cpi) + self.cpi)])
return img, caption, caplen,all_captions
def __len__(self):
return self.dataset_size