This repository has been archived by the owner on Sep 9, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathindex_documents.py
150 lines (128 loc) · 5.12 KB
/
index_documents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import argparse
import json
from typing import (
Dict,
List
)
import marqo
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from llama_index import SimpleDirectoryReader
def load_documents(folder_path, input_chunk_size, input_chunk_overlap):
source_chunks = []
sources = SimpleDirectoryReader(
input_dir=folder_path, recursive=True).load_data()
splitter = RecursiveCharacterTextSplitter(
chunk_size=input_chunk_size, chunk_overlap=input_chunk_overlap)
for source in sources:
for chunk in splitter.split_text(source.text):
source_chunks.append(Document(page_content=chunk, metadata={
"page_label": source.metadata.get("page_label"),
"file_name": source.metadata.get("file_name"),
"file_path": source.metadata.get("file_path"),
"file_type": source.metadata.get("file_type")
}))
return source_chunks
def get_formatted_documents(documents: List[Document]):
docs: List[Dict[str, str]] = []
for d in documents:
doc = {
"text": d.page_content,
"metadata": json.dumps(d.metadata) if d.metadata else json.dumps({}),
}
docs.append(doc)
return docs
def chunk_list(document, batch_size):
"""Return a list of batch sized chunks from document."""
return [document[i: i + batch_size] for i in range(0, len(document), batch_size)]
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--marqo_url',
type=str,
required=True,
help='Endpoint URL of marqo',
)
parser.add_argument('--index_name',
type=str,
required=True,
help='Name of marqo index',
)
parser.add_argument('--folder_path',
type=str,
required=True,
help='Path to the folder',
default="input_data"
)
parser.add_argument('--embedding_model',
type=str,
required=False,
help='data embedding model to be used.',
default="flax-sentence-embeddings/all_datasets_v4_mpnet-base"
)
parser.add_argument('--chunk_size',
type=int,
required=False,
help='documents chunk size',
default=1024
)
parser.add_argument('--chunk_overlap',
type=int,
required=False,
help='documents chunk size',
default=200
)
parser.add_argument('--fresh_index',
action='store_true',
help='Is the indexing fresh'
)
args = parser.parse_args()
MARQO_URL = args.marqo_url
MARQO_INDEX_NAME = args.index_name
FOLDER_PATH = args.folder_path
FRESH_INDEX = args.fresh_index
EMBED_MODEL = args.embedding_model
CHUNK_SIZE = args.chunk_size
CHUNK_OVERLAP = args.chunk_overlap
index_settings = {
"index_defaults": {
"treat_urls_and_pointers_as_images": False,
"model": EMBED_MODEL,
"normalize_embeddings": True,
"text_preprocessing": {
"split_length": 3,
"split_overlap": 1,
"split_method": "sentence"
}
}
}
# Initialize Marqo instance
marqo_client = marqo.Client(url=MARQO_URL)
if FRESH_INDEX:
try:
marqo_client.index(MARQO_INDEX_NAME).delete()
print("Existing Index successfully deleted.")
except:
print("Index does not exist. Creating new index")
marqo_client.create_index(
MARQO_INDEX_NAME, settings_dict=index_settings)
print(f"Index {MARQO_INDEX_NAME} created.")
print("Loading documents...")
documents = load_documents(FOLDER_PATH, CHUNK_SIZE, CHUNK_OVERLAP)
print("Total Documents ===>", len(documents))
f = open("indexed_documents.txt", "w")
f.write(str(documents))
f.close()
print(f"Indexing documents...")
formatted_documents = get_formatted_documents(documents)
tensor_fields = ['text']
_document_batch_size = 50
chunks = list(chunk_list(formatted_documents, _document_batch_size))
for chunk in chunks:
marqo_client.index(MARQO_INDEX_NAME).add_documents(
documents=chunk, client_batch_size=_document_batch_size, tensor_fields=tensor_fields)
print("============ INDEX DONE =============")
if __name__ == "__main__":
main()
# RUN
# python3 index_documents.py --marqo_url=http://0.0.0.0:8882 --index_name=sakhi_activity --folder_path=input_data --fresh_index (FOR FRESH INDEXING)
# python3 index_documents.py --marqo_url=http://0.0.0.0:8882 --index_name=sakhi_activity --folder_path=input_data (FOR APPENDING DOCUMENTS)