This repository has been archived by the owner on Sep 9, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathquery_with_langchain.py
211 lines (191 loc) · 8.78 KB
/
query_with_langchain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
from typing import (
Any,
List,
Tuple
)
from openai import AzureOpenAI, RateLimitError, APIError, InternalServerError
# from openai.types import ModerationCreateResponse
import marqo
from langchain.docstore.document import Document
from langchain.vectorstores.marqo import Marqo
from dotenv import load_dotenv
from logger import logger
from config_util import get_config_value
load_dotenv()
client = AzureOpenAI(
azure_endpoint=os.environ["OPENAI_API_BASE"],
api_key=os.environ["OPENAI_API_KEY"],
api_version=os.environ["OPENAI_API_VERSION"]
)
marqo_url = get_config_value("database", "MARQO_URL", None)
marqoClient = marqo.Client(url=marqo_url)
def querying_with_langchain_gpt4(query):
try:
logger.debug(f"Query ===> {query}")
system_rules = get_config_value("llm", "story_prompt", "")
gpt_model = get_config_value("llm", "gpt_model", None)
res = client.chat.completions.create(
model=gpt_model,
messages=[
{"role": "system", "content": system_rules},
{"role": "user", "content": query},
],
)
message = res.choices[0].message.model_dump()
response = message["content"]
logger.info({"label": "openai_response", "response": response})
# response, error_message = moderate_text(response)
# if error_message is not None:
# return None, None, None, error_message, 500
# else:
return response, "", "", None, 200
except RateLimitError as e:
error_message = f"OpenAI API request exceeded rate limit: {e}"
status_code = 500
except (APIError, InternalServerError):
error_message = "Server is overloaded or unable to answer your request at the moment. Please try again later"
status_code = 503
except Exception as e:
error_message = str(e.__context__) + " and " + e.__str__()
status_code = 500
return None, None, None, error_message, status_code
# def moderate_text(text:str):
# """
# Moderates the provided text using the OpenAI API.
#
# Args:
# text: The text to be moderated.
#
# Returns:
# A dictionary containing the moderation results and errors.
# """
#
# try:
# # Send moderation request
# response: ModerationCreateResponse = client.moderations.create(input=text)
# result = response.results[0]
# logger.info({"label": "openai_moderation", "response": result})
# if result.flagged:
# text = "As the Sakhi Virtual Assistant, I'm dedicated to providing informative and supportive assistance related to Activities, Stories, Songs, Riddles and Rhymes suitable for 3-8 year old children. Your question has been identified as inappropriate due to its harassment and violent threat content. I encourage a respectful and constructive dialogue focused on educational matters. How can I assist you further with your queries?"
# return text, None
# except Exception as e:
# error_message = str(e.__context__) + " and " + e.__str__()
# logger.error(f"Error moderating text: {error_message}")
# return None, error_message
def query_rstory_gpt3(index_id, query):
load_dotenv()
logger.debug(f"Query ===> {query}")
gpt_model = get_config_value("llm", "gpt_model", None)
intent_response = "No"
enable_bot_intent = get_config_value("llm", "enable_bot_intent", None)
if enable_bot_intent.lower() == "true":
# intent recognition using AI
intent_system_rules = get_config_value("llm", "intent_prompt", None)
logger.debug(f"intent_system_rules: {intent_system_rules}")
if intent_system_rules:
intent_res = client.chat.completions.create(
model=gpt_model,
messages=[
{"role": "system", "content": intent_system_rules},
{"role": "user", "content": query}
],
)
intent_message = intent_res.choices[0].message.model_dump()
intent_response = intent_message["content"]
logger.info({"label": "openai_intent_response", "intent_response": intent_response})
if intent_response.lower() == "yes":
system_rules = get_config_value("llm", "bot_prompt", "")
logger.debug("==== System Rules ====")
logger.debug(f"System Rules : {system_rules}")
res = client.chat.completions.create(
model=gpt_model,
messages=[
{"role": "system", "content": system_rules},
{"role": "user", "content": query}
],
)
message = res.choices[0].message.model_dump()
response = message["content"]
logger.info({"label": "openai_bot_response", "bot_response": response})
return response, None, 200
else:
try:
search_index = Marqo(marqoClient, index_id, searchable_attributes=["text"])
top_docs_to_fetch = get_config_value("database", "top_docs_to_fetch", None)
documents = search_index.similarity_search_with_score(query, k=20)
logger.debug(f"Marqo documents : {str(documents)}")
min_score = get_config_value("database", "docs_min_score", None)
filtered_document = get_score_filtered_documents(documents, float(min_score))
filtered_document = filtered_document[:int(top_docs_to_fetch)]
logger.info(f"Score filtered documents : {str(filtered_document)}")
contexts = get_formatted_documents(filtered_document)
if not documents or not contexts:
return "I'm sorry, but I don't have enough information to provide a specific answer for your question. Please provide more information or context about what you are referring to.", None, 200
system_rules = get_config_value("llm", "r_story_prompt", "")
system_rules = system_rules.format(contexts=contexts)
logger.info("==== System Rules ====")
logger.debug(system_rules)
res = client.chat.completions.create(
model=gpt_model,
messages=[
{"role": "system", "content": system_rules},
{"role": "user", "content": query},
],
)
message = res.choices[0].message.model_dump()
response = message["content"]
logger.info({"label": "openai_response", "response": response})
# response, error_message = moderate_text(response)
# if error_message is not None:
# return "", error_message, 500
return response, None, 200
except RateLimitError as e:
error_message = f"OpenAI API request exceeded rate limit: {e}"
status_code = 500
except (APIError, InternalServerError):
error_message = "Server is overloaded or unable to answer your request at the moment. Please try again later"
status_code = 503
except Exception as e:
error_message = str(e.__context__) + " and " + e.__str__()
status_code = 500
return "", error_message, status_code
def get_score_filtered_documents(documents: List[Tuple[Document, Any]], min_score=0.0):
return [(document, search_score) for document, search_score in documents if search_score > min_score]
def get_formatted_documents(documents: List[Tuple[Document, Any]]):
sources = ""
for document, _ in documents:
sources += f"""
> {document.page_content} \n > context_source: [filename# {document.metadata['file_name']}, page# {document.metadata['page_label']}]\n\n
"""
return sources
def generate_source_format(documents: List[Tuple[Document, Any]]) -> str:
"""Generates an answer format based on the given data.
Args:
data: A list of tuples, where each tuple contains a Document object and a
score.
Returns:
A string containing the formatted answer, listing the source documents
and their corresponding pages.
"""
try:
sources = {}
for doc, _ in documents:
file_name = doc.metadata['file_name']
page_label = doc.metadata['page_label']
sources.setdefault(file_name, []).append(page_label)
answer_format = "\nSources:\n"
counter = 1
for file_name, pages in sources.items():
answer_format += f"{counter}. {file_name} - (Pages: {', '.join(pages)})\n"
counter += 1
return answer_format
except Exception as e:
error_message = "Error while preparing source markdown"
logger.error(f"{error_message}: {e}", exc_info=True)
return ""
def concatenate_elements(arr):
# Concatenate elements from index 1 to n
separator = ': '
result = separator.join(arr[1:])
return result