diff --git a/examples/model/model_metrics.py b/examples/model/model_metrics.py index 27e56591a..c03c8eb97 100644 --- a/examples/model/model_metrics.py +++ b/examples/model/model_metrics.py @@ -15,4 +15,4 @@ # Get the model metrics and regression predictions print(model.performance_metrics()) -print(model.predictions()) +print(model.get_predictions()) diff --git a/src/sageworks/core/artifacts/model_core.py b/src/sageworks/core/artifacts/model_core.py index 36f79c543..32f9e44e1 100644 --- a/src/sageworks/core/artifacts/model_core.py +++ b/src/sageworks/core/artifacts/model_core.py @@ -876,7 +876,7 @@ def shapley_values(self, capture_uuid: str = "training_holdout") -> Union[list[p # Grab our regression predictions from S3 print("Captured Predictions: (might be None)") - print(my_model.predictions()) + print(my_model.get_predictions()) # Grab our Shapley values from S3 print("Shapley Values: (might be None)") diff --git a/src/sageworks/web_components/regression_plot.py b/src/sageworks/web_components/regression_plot.py index 7dfe6fc2e..2340226f4 100644 --- a/src/sageworks/web_components/regression_plot.py +++ b/src/sageworks/web_components/regression_plot.py @@ -20,7 +20,7 @@ def create_component(self, component_id: str) -> dcc.Graph: def update_properties(self, model: Model, inference_run: str = None) -> go.Figure: # Get predictions for specific inference - df = model.predictions(inference_run) + df = model.get_predictions(inference_run) if df is None: return self.display_text("No Data") diff --git a/tests/transforms/model_metrics_tests.py b/tests/transforms/model_metrics_tests.py index 6869e221c..6d441024c 100644 --- a/tests/transforms/model_metrics_tests.py +++ b/tests/transforms/model_metrics_tests.py @@ -36,7 +36,7 @@ def test_retrieval_with_capture_uuid(): print(f"\n\n*** Retrieval with Capture UUID ({capture_uuid}) ***") pprint(model_class.inference_metadata(capture_uuid).head()) # Needed pprint(model_class.performance_metrics(capture_uuid).head()) # Might be deprecated - pprint(model_class.predictions(capture_uuid).head()) # Needed + pprint(model_class.get_predictions(capture_uuid).head()) # Needed pprint(model_class.confusion_matrix(capture_uuid)) # Might be deprecated # Classifiers have a list of dataframes for shap values shap_list = model_class.shapley_values(capture_uuid)