forked from rishikksh20/AdaSpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
245 lines (196 loc) · 6.89 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
"""TTS Inference script."""
import configargparse
import logging
import os
import torch
import sys
from utils.util import set_deterministic_pytorch
from fastspeech import FeedForwardTransformer
from dataset.texts import phonemes_to_sequence
import time
from dataset.audio_processing import griffin_lim
import numpy as np
from utils.stft import STFT
from scipy.io.wavfile import write
from dataset.texts import valid_symbols
from utils.hparams import HParam, load_hparam_str
from dataset.texts.cleaners import english_cleaners, punctuation_removers
import matplotlib.pyplot as plt
from g2p_en import G2p
def synthesis(args, text, hp):
"""Decode with E2E-TTS model."""
set_deterministic_pytorch(args)
# read training config
idim = hp.symbol_len
odim = hp.num_mels
model = FeedForwardTransformer(idim, odim, hp)
print(model)
if os.path.exists(args.path):
print("\nSynthesis Session...\n")
model.load_state_dict(torch.load(args.path), strict=False)
else:
print("Checkpoint not exixts")
return None
model.eval()
# set torch device
device = torch.device("cuda" if args.ngpu > 0 else "cpu")
model = model.to(device)
input = np.asarray(phonemes_to_sequence(text.split()))
text = torch.LongTensor(input)
text = text.cuda()
# [num_char]
with torch.no_grad():
# decode and write
idx = input[:5]
start_time = time.time()
print("text :", text.size())
outs, probs, att_ws = model.inference(text, hp)
print("Out size : ", outs.size())
logging.info(
"inference speed = %s msec / frame."
% ((time.time() - start_time) / (int(outs.size(0)) * 1000))
)
if outs.size(0) == text.size(0) * args.maxlenratio:
logging.warning("output length reaches maximum length .")
print("mels", outs.size())
mel = outs.cpu().numpy() # [T_out, num_mel]
print("numpy ", mel.shape)
return mel
### for direct text/para input ###
g2p = G2p()
def plot_mel(mels):
melspec = mels.reshape(1, 80, -1)
plt.imshow(melspec.detach().cpu()[0], aspect="auto", origin="lower")
plt.savefig("mel.png")
def preprocess(text):
# input - line of text
# output - list of phonemes
str1 = " "
clean_content = english_cleaners(text)
clean_content = punctuation_removers(clean_content)
phonemes = g2p(clean_content)
phonemes = ["" if x == " " else x for x in phonemes]
phonemes = ["pau" if x == "," else x for x in phonemes]
phonemes = ["pau" if x == "." else x for x in phonemes]
phonemes = str1.join(phonemes)
return phonemes
def process_paragraph(para):
# input - paragraph with lines seperated by "."
# output - list with each item as lines of paragraph seperated by suitable padding
text = []
for lines in para.split("."):
text.append(lines)
return text
def synth(text, model, hp, ref_mel):
"""Decode with E2E-TTS model."""
print("TTS synthesis")
model.eval()
# set torch device
device = torch.device("cuda" if hp.train.ngpu > 0 else "cpu")
model = model.to(device)
input = np.asarray(phonemes_to_sequence(text))
text = torch.LongTensor(input)
text = text.to(device)
with torch.no_grad():
print("predicting")
outs = model.inference(text, ref_mel = ref_mel) # model(text) for jit script
mel = outs
return mel
def main(args):
"""Run deocding."""
para_mel = []
parser = get_parser()
args = parser.parse_args(args)
logging.info("python path = " + os.environ.get("PYTHONPATH", "(None)"))
print("Text : ", args.text)
print("Checkpoint : ", args.checkpoint_path)
ref_mel = np.load(args.ref_mel)
ref_mel = torch.from_numpy(ref_mel).T
if os.path.exists(args.checkpoint_path):
checkpoint = torch.load(args.checkpoint_path)
else:
logging.info("Checkpoint not exixts")
return None
if args.config is not None:
hp = HParam(args.config)
else:
hp = load_hparam_str(checkpoint["hp_str"])
idim = len(valid_symbols)
odim = hp.audio.num_mels
model = FeedForwardTransformer(
idim, odim, hp
) # torch.jit.load("./etc/fastspeech_scrip_new.pt")
os.makedirs(args.out, exist_ok=True)
if args.old_model:
logging.info("\nSynthesis Session...\n")
model.load_state_dict(checkpoint, strict=False)
else:
checkpoint = torch.load(args.checkpoint_path)
model.load_state_dict(checkpoint["model"])
text = process_paragraph(args.text)
for i in range(0, len(text)):
txt = preprocess(text[i])
audio = synth(txt, model, hp, ref_mel)
m = audio.T
para_mel.append(m)
m = torch.cat(para_mel, dim=1)
np.save("mel.npy", m.cpu().numpy())
plot_mel(m)
if hp.train.melgan_vocoder:
m = m.unsqueeze(0)
print("Mel shape: ", m.shape)
vocoder = torch.hub.load("seungwonpark/melgan", "melgan")
vocoder.eval()
if torch.cuda.is_available():
vocoder = vocoder.cuda()
mel = m.cuda()
with torch.no_grad():
wav = vocoder.inference(
mel
) # mel ---> batch, num_mels, frames [1, 80, 234]
wav = wav.cpu().float().numpy()
else:
stft = STFT(filter_length=1024, hop_length=256, win_length=1024)
print(m.size())
m = m.unsqueeze(0)
wav = griffin_lim(m, stft, 30)
wav = wav.cpu().numpy()
save_path = "{}/test_tts.wav".format(args.out)
write(save_path, hp.audio.sample_rate, wav.astype("int16"))
# NOTE: you need this func to generate our sphinx doc
def get_parser():
"""Get parser of decoding arguments."""
parser = configargparse.ArgumentParser(
description="Synthesize speech from text using a TTS model on one CPU",
config_file_parser_class=configargparse.YAMLConfigFileParser,
formatter_class=configargparse.ArgumentDefaultsHelpFormatter,
)
# general configuration
parser.add_argument(
"-c", "--config", type=str, required=True, help="yaml file for configuration"
)
parser.add_argument(
"-p",
"--checkpoint_path",
type=str,
default=None,
help="path of checkpoint pt file to resume training",
)
parser.add_argument("--out", type=str, required=True, help="Output filename")
parser.add_argument(
"-o", "--old_model", action="store_true", help="Resume Old model "
)
# task related
parser.add_argument(
"--text", type=str, required=True, help="Filename of train label data (json)"
)
parser.add_argument(
"--ref_mel", type=str, required=True, help="Filename of Reference Mels"
)
parser.add_argument(
"--pad", default=2, type=int, help="padd value at the end of each sentence"
)
return parser
if __name__ == "__main__":
print("Starting")
main(sys.argv[1:])