Skip to content

Latest commit

 

History

History
349 lines (246 loc) · 12.5 KB

TUTORIAL_7_TRAINING_A_MODEL.md

File metadata and controls

349 lines (246 loc) · 12.5 KB

Tutorial 7: Training a Model

This part of the tutorial shows how you can train your own sequence labelling and text classification models using state-of-the-art word embeddings.

For this tutorial, we assume that you're familiar with the base types of this library and how word embeddings work (ideally, you also know how flair embeddings work). You should also know how to load a corpus.

Training a Sequence Labeling Model

Here is example code for a small NER model trained over WikiNER data, using simple GloVe embeddings. To run this code, you first need to obtain the CoNLL-03 English dataset (alternatively, use NLPTaskDataFetcher.load_corpus(NLPTask.WNUT_17) instead for a task with freely available data).

In this example, we downsample the data to 10% of the original data because the WikiNER dataset is huge:

from flair.data import Corpus
from flair.datasets import WIKINER_ENGLISH
from flair.embeddings import TokenEmbeddings, WordEmbeddings, StackedEmbeddings
from typing import List

# 1. get the corpus
corpus: Corpus = WIKINER_ENGLISH().downsample(0.1)
print(corpus)

# 2. what tag do we want to predict?
tag_type = 'ner'

# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
print(tag_dictionary.idx2item)

# 4. initialize embeddings
embedding_types: List[TokenEmbeddings] = [

    WordEmbeddings('glove'),

    # comment in this line to use character embeddings
    # CharacterEmbeddings(),

    # comment in these lines to use flair embeddings
    # FlairEmbeddings('news-forward'),
    # FlairEmbeddings('news-backward'),
]

embeddings: StackedEmbeddings = StackedEmbeddings(embeddings=embedding_types)

# 5. initialize sequence tagger
from flair.models import SequenceTagger

tagger: SequenceTagger = SequenceTagger(hidden_size=256,
                                        embeddings=embeddings,
                                        tag_dictionary=tag_dictionary,
                                        tag_type=tag_type,
                                        use_crf=True)

# 6. initialize trainer
from flair.trainers import ModelTrainer

trainer: ModelTrainer = ModelTrainer(tagger, corpus)

# 7. start training
trainer.train('resources/taggers/example-ner',
              learning_rate=0.1,
              mini_batch_size=32,
              max_epochs=150)

# 8. plot training curves (optional)
from flair.visual.training_curves import Plotter
plotter = Plotter()
plotter.plot_training_curves('resources/taggers/example-ner/loss.tsv')
plotter.plot_weights('resources/taggers/example-ner/weights.txt')

Alternatively, try using a stacked embedding with FlairEmbeddings and GloVe, over the full data, for 150 epochs. This will give you the state-of-the-art accuracy we report in the paper. To see the full code to reproduce experiments, check here.

Once the model is trained you can use it to predict the class of new sentences. Just call the predict method of the model.

# load the model you trained
model = SequenceTagger.load('resources/taggers/example-ner/final-model.pt')

# create example sentence
sentence = Sentence('I love Berlin')

# predict tags and print
model.predict(sentence)

print(sentence.to_tagged_string())

If the model works well, it will correctly tag 'Berlin' as a location in this example.

Training a Text Classification Model

Here is example code for training a text classifier over the TREC-6 corpus, using a combination of simple GloVe embeddings and Flair embeddings.

from flair.data import Corpus
from flair.datasets import TREC_6
from flair.embeddings import WordEmbeddings, FlairEmbeddings, DocumentRNNEmbeddings
from flair.models import TextClassifier
from flair.trainers import ModelTrainer


# 1. get the corpus
corpus: Corpus = TREC_6()

# 2. create the label dictionary
label_dict = corpus.make_label_dictionary()

# 3. make a list of word embeddings
word_embeddings = [WordEmbeddings('glove'),

                   # comment in flair embeddings for state-of-the-art results
                   # FlairEmbeddings('news-forward'),
                   # FlairEmbeddings('news-backward'),
                   ]

# 4. initialize document embedding by passing list of word embeddings
# Can choose between many RNN types (GRU by default, to change use rnn_type parameter)
document_embeddings: DocumentRNNEmbeddings = DocumentRNNEmbeddings(word_embeddings,
                                                                     hidden_size=512,
                                                                     reproject_words=True,
                                                                     reproject_words_dimension=256,
                                                                     )

# 5. create the text classifier
classifier = TextClassifier(document_embeddings, label_dictionary=label_dict)

# 6. initialize the text classifier trainer
trainer = ModelTrainer(classifier, corpus)

# 7. start the training
trainer.train('resources/taggers/ag_news',
              learning_rate=0.1,
              mini_batch_size=32,
              anneal_factor=0.5,
              patience=5,
              max_epochs=150)

# 8. plot training curves (optional)
from flair.visual.training_curves import Plotter
plotter = Plotter()
plotter.plot_training_curves('resources/taggers/ag_news/loss.tsv')
plotter.plot_weights('resources/taggers/ag_news/weights.txt')

Once the model is trained you can load it to predict the class of new sentences. Just call the predict method of the model.

classifier = TextClassifier.load('resources/taggers/ag_news/final-model.pt')

# create example sentence
sentence = Sentence('France is the current world cup winner.')

# predict tags and print
classifier.predict(sentence)

print(sentence.labels)

Multi-Dataset Training

Now, let us train a single model that can PoS tag text in both English and German. To do this, we load both the English and German UD corpora and create a MultiCorpus object. We also use the new multilingual Flair embeddings for this task.

All the rest is same as before, e.g.:

from typing import List
from flair.data import MultiCorpus
from flair.datasets import UD_ENGLISH, UD_GERMAN
from flair.embeddings import FlairEmbeddings, TokenEmbeddings, StackedEmbeddings
from flair.training_utils import EvaluationMetric


# 1. get the corpora - English and German UD
corpus: MultiCorpus = MultiCorpus([UD_ENGLISH(), UD_GERMAN()]).downsample(0.1)

# 2. what tag do we want to predict?
tag_type = 'upos'

# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
print(tag_dictionary.idx2item)

# 4. initialize embeddings
embedding_types: List[TokenEmbeddings] = [

    # we use multilingual Flair embeddings in this task
    FlairEmbeddings('multi-forward'),
    FlairEmbeddings('multi-backward'),
]

embeddings: StackedEmbeddings = StackedEmbeddings(embeddings=embedding_types)

# 5. initialize sequence tagger
from flair.models import SequenceTagger

tagger: SequenceTagger = SequenceTagger(hidden_size=256,
                                        embeddings=embeddings,
                                        tag_dictionary=tag_dictionary,
                                        tag_type=tag_type,
                                        use_crf=True)

# 6. initialize trainer
from flair.trainers import ModelTrainer

trainer: ModelTrainer = ModelTrainer(tagger, corpus)

# 7. start training
trainer.train('resources/taggers/example-universal-pos',
              learning_rate=0.1,
              mini_batch_size=32,
              max_epochs=150,
              evaluation_metric=EvaluationMetric.MICRO_ACCURACY)

Note that here we use the MICRO_ACCURACY evaluation metric instead of the default MICRO_F1_SCORE. This gives you a multilingual model. Try experimenting with more languages!

Plotting Training Curves and Weights

Flair includes a helper method to plot training curves and weights in the neural network. The ModelTrainer automatically generates a loss.tsv and a weights.txt file in the result folder.

After training, simple point the plotter to these files:

from flair.visual.training_curves import Plotter
plotter = Plotter()
plotter.plot_training_curves('loss.tsv')
plotter.plot_weights('weights.txt')

This generates PNG plots in the result folder.

Resuming Training

If you want to stop the training at some point and resume it at a later point, you should train with the parameter checkpoint set to True. This will save the model plus training parameters after every epoch. Thus, you can load the model plus trainer at any later point and continue the training exactly there where you have left.

The example code below shows how to train, stop, and continue training of a SequenceTagger. Same can be done for TextClassifier.

from flair.data import Corpus
from flair.datasets import WNUT_17
from flair.embeddings import TokenEmbeddings, WordEmbeddings, StackedEmbeddings
from typing import List

# 1. get the corpus
corpus: Corpus = WNUT_17().downsample(0.1)

# 2. what tag do we want to predict?
tag_type = 'ner'

# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)

# 4. initialize embeddings
embedding_types: List[TokenEmbeddings] = [
    WordEmbeddings('glove')
]

embeddings: StackedEmbeddings = StackedEmbeddings(embeddings=embedding_types)

# 5. initialize sequence tagger
from flair.models import SequenceTagger

tagger: SequenceTagger = SequenceTagger(hidden_size=256,
                                        embeddings=embeddings,
                                        tag_dictionary=tag_dictionary,
                                        tag_type=tag_type,
                                        use_crf=True)

# 6. initialize trainer
from flair.trainers import ModelTrainer
from flair.training_utils import EvaluationMetric

trainer: ModelTrainer = ModelTrainer(tagger, corpus)

# 7. start training
trainer.train('resources/taggers/example-ner',
              EvaluationMetric.MICRO_F1_SCORE,
              learning_rate=0.1,
              mini_batch_size=32,
              max_epochs=150,
              checkpoint=True)

# 8. stop training at any point

# 9. continue trainer at later point
from pathlib import Path

checkpoint = tagger.load_checkpoint(Path('resources/taggers/example-ner/checkpoint.pt'))
trainer = ModelTrainer.load_from_checkpoint(checkpoint, corpus)
trainer.train('resources/taggers/example-ner',
              EvaluationMetric.MICRO_F1_SCORE,
              learning_rate=0.1,
              mini_batch_size=32,
              max_epochs=150,
              checkpoint=True)

Scalability: Training on Large Data Sets

The main thing to consider when using FlairEmbeddings (which you should) is that they are somewhat costly to generate for large training data sets. Depending on your setup, you can set options to optimize training time. There are three questions to ask:

  1. Do you have a GPU?

FlairEmbeddings are generated using PyTorch RNNs and are thus optimized for GPUs. If you have one, you can set large mini-batch sizes to make use of batching. If not, you may want to use smaller language models. For English, we package 'fast' variants of our embeddings, loadable like this: FlairEmbeddings('news-forward-fast').

  1. Do embeddings for the entire dataset fit into memory?

In the best-case scenario, all embeddings for the dataset fit into your regular memory, which greatly increases training speed. If this is not the case, you must set the flag embeddings_in_memory=False in the respective trainer (i.e. ModelTrainer) to avoid memory problems. With the flag, embeddings are either (a) recomputed at each epoch or (b) retrieved from disk if you choose to materialize to disk.

  1. Do you have a fast hard drive?

If you have a fast hard drive, consider materializing the embeddings to disk. You can do this by instantiating FlairEmbeddings as follows: FlairEmbeddings('news-forward-fast', use_cache=True). This can help if embeddings do not fit into memory. Also if you do not have a GPU and want to do repeat experiments on the same dataset, this helps because embeddings need only be computed once and will then always be retrieved from disk.

Next

You can now either look into optimizing your model or training your own embeddings.