-
Notifications
You must be signed in to change notification settings - Fork 1
/
DDQN_PER.py
268 lines (223 loc) · 12 KB
/
DDQN_PER.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from IPython.core.debugger import set_trace
import numpy as np
import random
from collections import namedtuple, deque
from model import QNetwork
import torch
import torch.nn.functional as F
import torch.optim as optim
BUFFER_SIZE = int(1e5) # replay buffer size
BATCH_SIZE = 64 # minibatch size
GAMMA = 0.95 # discount factor
TAU = 1e-3 # for soft update of target parameters
LR = 0.001 # learning rate
UPDATE_EVERY = 10 # how often to update the network
UPDATE_EVERY_LR = 250 # how often to update the learning rate scheduler
UPDATE_EVERY_TARGET = 10 # how often update the target network
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Agent():
"""Interacts with and learns from the environment."""
def __init__(self, state_size, action_size, seed, lr_decay=0.999):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
lr_decay (float): multiplicative factor of learning rate decay
seed (int): random seed
"""
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(seed)
# Q-Network
self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device)
self.qnetwork_target = QNetwork(state_size, action_size, seed).to(device)
self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) #only update the local network parameters
self.lr_scheduler = optim.lr_scheduler.ExponentialLR(self.optimizer, lr_decay)
# prioritized Replay memory
self.memory = PrioritizedReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed, device,
alpha=0.6, beta=0.4, beta_scheduler=1.0)
# Initialize time step (for updating every UPDATE_EVERY steps)
self.t_step = 0
# Initialize time step learning rate scheduler(for updating every UPDATE_EVERY_LR steps)
self.t_step_lr = 0
# Initialize time step (for updating every UPDATE_EVERY_TARGET steps)
self.t_step_target = 0
def step(self, state, action, reward, next_state, done):
# Save experience in replay memory
self.memory.add(state, action, reward, next_state, done)
# Learn every UPDATE_EVERY time steps.
self.t_step = (self.t_step + 1) % UPDATE_EVERY
# Learn every UPDATE_EVERY_LR time steps.
self.t_step_lr = (self.t_step_lr + 1) % UPDATE_EVERY_LR
if self.t_step == 0:
# If enough samples are available in memory, get random subset and learn
if len(self.memory) > BATCH_SIZE:
experiences = self.memory.sample()
self.learn(experiences, GAMMA)
def act(self, state, eps=0.):
"""Returns actions for given state as per current policy and Q value.
Params
======
state (array_like): current state
eps (float): epsilon, for epsilon-greedy action selection
"""
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
self.qnetwork_local.eval()
with torch.no_grad():
#set_trace()
action_values = self.qnetwork_local(state)
self.qnetwork_local.train()
# Epsilon-greedy action selection
if random.random() > eps:
return np.argmax(action_values.cpu().data.numpy()), np.max(action_values.cpu().data.numpy())
else:
#set_trace()
random_action = random.choice(np.arange(self.action_size))
action_values = action_values.cpu().data.numpy()
return random_action, action_values[0,0,random_action]
def learn(self, experiences, gamma):
"""Update value parameters using given batch of experience tuples.
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done, w) tuples
gamma (float): discount factor
"""
states, actions, rewards, next_states, dones, w = experiences
# Get max predicted Q values (for next states) from target model
Q_locals_next = self.qnetwork_local(next_states)
greedy_actions = Q_locals_next.max(dim=1, keepdim=True)[1] # greedy action suggested by local network
Q_targets_next = self.qnetwork_target(next_states).gather(1,greedy_actions) # Q values of those action w.r.t target network
# Compute Q targets for current states
Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
#Get expected Q values from local model
Q_expected = self.qnetwork_local(states).gather(1, actions)
# Compute loss
Q_targets.sub_(Q_expected)
Q_targets.squeeze_()
Q_targets.pow_(2)
with torch.no_grad():
TD_error = Q_targets.detach()
TD_error.pow_(0.5)
self.memory.update_priorities(TD_error)
Q_targets.mul_(w)
loss = Q_targets.mean()
# Minimize the loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.t_step_target = (self.t_step_target + 1) % UPDATE_EVERY_TARGET
if self.t_step_lr == 0:
self.lr_scheduler.step()
# ------------------- update target network ------------------- #
if self.t_step_target == 0: # update target network after every UPDATE_EVERY_TARGET
self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) #updating the target network parameters
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model (PyTorch model): weights will be copied from
target_model (PyTorch model): weights will be copied to
tau (float): interpolation parameter
"""
#self.qnetwork_local.eval()
#self.qnetwork_target.eval()
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class PrioritizedReplayBuffer:
"""Fixed-size prioritized buffer to store experience tuples."""
def __init__(self, action_size, buffer_size, batch_size, seed, device, alpha=0., beta=1., beta_scheduler=1.):
"""Initialize a PrioritizedReplayBuffer object.
Params
======
action_size (int): dimension of each action
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
seed (int): random seed
alpha (float): determines how much prioritization is used; α = 0 corresponding to the uniform case
beta (float): amount of importance-sampling correction; β = 1 fully compensates for the non-uniform probabilities
beta_scheduler (float): multiplicative factor (per sample) for increasing beta (should be >= 1.0)
"""
self.action_size = action_size
self.buffer_size = buffer_size
self.batch_size = batch_size
self.seed = np.random.seed(seed)
self.device = device
self.alpha = alpha
self.beta = beta
self.beta_scheduler = beta_scheduler
# Create a Numpy Array to store namedtuples of experience
self.memory = np.empty(buffer_size, dtype=[
("state", np.ndarray),
("action", np.int),
("reward", np.float),
("next_state", np.ndarray),
("done", np.bool),
('prob', np.double)]) # sel.memory = [(s,a,r,s',d,w),(s,a,r,s',d,w)]
# Variable to control the memory buffer as being a circular list
self.memory_idx_ctrl = 0
# Variable to control the selected samples
self.memory_samples_idx = np.empty(batch_size)
# Numpy Array to store selected samples
# Those samples could be controlled only by the index,
# however keeping an allocated space in memory improves performance.
# (Here we have a tradeoff between memory space and cumputacional processing)
self.memory_samples = np.empty(batch_size, dtype=type(self.memory))
# Each new experience is added to the memory with
# the maximum probability of being choosen
self.max_prob = 0.0001
# Value to a non-zero probability
self.nonzero_probability = 0.00001
# Numpy Arrays to store probabilities and weights
# (tradeoff between memory space and cumputacional processing)
self.p = np.empty(buffer_size, dtype=np.double)
self.w = np.empty(buffer_size, dtype=np.double)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
# Add the experienced parameters to the memory
self.memory[self.memory_idx_ctrl]['state'] = state
self.memory[self.memory_idx_ctrl]['action'] = action
self.memory[self.memory_idx_ctrl]['reward'] = reward
self.memory[self.memory_idx_ctrl]['next_state'] = next_state
self.memory[self.memory_idx_ctrl]['done'] = done
self.memory[self.memory_idx_ctrl]['prob'] = self.max_prob
# Control memory as a circular list
self.memory_idx_ctrl = (self.memory_idx_ctrl + 1) % self.buffer_size
def sample(self):
"""Sample a batch of prioritized experiences from memory."""
# Normalize the probability of being chosen for each one of the memory registers
np.divide(self.memory['prob'], self.memory['prob'].sum(), out=self.p) # p = (p)/(sum of p)
# Choose "batch_size" sample index following the defined probability
self.memory_samples_idx = np.random.choice(self.buffer_size, self.batch_size, replace=False, p=self.p)
# Get the samples from memory
self.memory_samples = self.memory[self.memory_samples_idx]
# Compute importance-sampling weights for each one of the memory registers
# w = ((N * P) ^ -β) / max(w)
np.multiply(self.memory['prob'], self.buffer_size, out=self.w)
np.power(self.w, -self.beta, out=self.w, where=self.w!=0) # condition to avoid division by zero
np.divide(self.w, self.w.max(), out=self.w) # normalize the weights
self.beta = min(1, self.beta*self.beta_scheduler)
# Split data into new variables
states = torch.from_numpy(np.vstack(self.memory_samples['state'])).float().to(self.device)
actions = torch.from_numpy(np.vstack(self.memory_samples['action'])).long().to(self.device)
rewards = torch.from_numpy(np.vstack(self.memory_samples['reward'])).float().to(self.device)
next_states = torch.from_numpy(np.vstack(self.memory_samples['next_state'])).float().to(self.device)
dones = torch.from_numpy(np.vstack(self.memory_samples['done'])).float().to(self.device)
weights = torch.from_numpy(self.w[self.memory_samples_idx]).float().to(self.device)
return (states, actions, rewards, next_states, dones, weights)
def update_priorities(self, td_error):
# Balance the prioritization using the alpha value
td_error.pow_(self.alpha)
# Guarantee a non-zero probability
td_error.add_(self.nonzero_probability)
#convert cuda tensor to numpy array
td_error = td_error.cpu().data.numpy()
# Update the probabilities in memory
self.memory_samples['prob'] = td_error
self.memory[self.memory_samples_idx] = self.memory_samples
# Update the maximum probability value
self.max_prob = self.memory['prob'].max()
def __len__(self):
"""Return the current size of internal memory."""
return self.buffer_size if self.memory_idx_ctrl // self.buffer_size > 0 else self.memory_idx_ctrl